Free Access
Volume 23, Number 4, 1989
Page(s) 565 - 592
Published online 31 January 2017
  1. Y. BRENIER and S. OSHER, Approximate Riemman Solvers and Numerical Flux Functions, ICASE report n° 84-63 (1984). [Zbl: 0597.65071] [Google Scholar]
  2. G. CHAVENT and B. COCKBURN, Convergence et Stabilité des Schémas LRG, INRIA report. [Google Scholar]
  3. G. CHAVENT and G. SALZANO, A finite Element Method for the 1D Water Flooding Problem with Gravity, J. Comp. Phys., 45 (1982), pp. 307-344. [MR: 666166] [Zbl: 0489.76106] [Google Scholar]
  4. B. COCKBURN, Le Schéma G-k/2 pour les Lois de Conservation Scalaires, Congrès National d'Analyse Numérique (1984), pp. 53-56. [Google Scholar]
  5. B. COCKBURN, The Quasi-Monotone schemes for Scalar Conservation Laws, IMA Preprint Séries n° 263, 268 and 277. To appear in SIAM J. Numer. Anal. [MR: 1025091] [Google Scholar]
  6. A. HARTEN, On a class of high-resolution total-variation-stable finite-differene schemes, SIAM J. Numer. AnaL, 21 (1984), pp. 1-23. [MR: 731210] [Zbl: 0547.65062] [Google Scholar]
  7. C. JOHNSON and J. PITKARANTA, An Analysis of the Discontinuous Galerkin Method for a Scalar Hyperbolic Equation, Math, of Comp., 46 (1986), pp.1-26. [MR: 815828] [Zbl: 0618.65105] [Google Scholar]
  8. A. Y. LEROUX, A Numerical Conception of Entropy for Quasi-Linear Equations, Math. of Comp., 31 (1977), pp. 848-872. [MR: 478651] [Zbl: 0378.65053] [Google Scholar]
  9. P. LESAINT and P. A. RAVIART, On a Finite Element Method for Solving the Neutron Transport Equation, Mathematical Aspects of Finite Element in Partial Differential Equations, Academic Press, Ed. Carl de Boor, pp. 89-145. [Zbl: 0341.65076] [Google Scholar]
  10. S. OSHER, Convergence of Generalized MUSCL Schemes, SIAM J. Numer. Anal., 22 (1984), pp. 947-961. [MR: 799122] [Zbl: 0627.35061] [Google Scholar]
  11. S. OSHER, Riemman Solvers, the Entropy Condition and Difference Approximations, SIAM J. Numer. Anal., 21 (1984), pp. 217-235. [MR: 736327] [Zbl: 0592.65069] [Google Scholar]
  12. E. TADMOR, Numerical Viscosity and the Entropy Condition for Conservative Difference Schemes, Math. Comp., 43 (1984), pp. 369-381. [MR: 758189] [Zbl: 0587.65058] [Google Scholar]
  13. B. VAN LEER, Towards the Ultimate Conservative Scheme, II Monotonicity and Conservation Combined in a Second Order Scheme, J. Comput. Phys., 14 (1974), pp. 361-370. [Zbl: 0276.65055] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you