Free Access
Volume 23, Number 4, 1989
Page(s) 627 - 647
Published online 31 January 2017
  1. P. G. CIARLET, The finite element method for elliptic problems, North-Holland-Publ. Comp., Amsterdam/New York, 1978. [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  2. M. CROUZEIX, P. A. RAVIART, Conforming and Nonconforming Finite Element Methods for Solving the Stationary Stokes Equations RAIRO Numer. Anal. 3 (1973), 33-76. [EuDML: 193250] [MR: 343661] [Zbl: 0302.65087] [Google Scholar]
  3. M. FORTIN, Résolution numérique des équations de Navier-Stokes par des méthodes d'éléments finis de type mixte, Proc. 2 Int. Symp. Finite Elements in Flow Problems, S. Margherita Ligure, Italy (1978). [Google Scholar]
  4. V. GIRAULT, P.-A. RAVIART, Finite Element Approximation of the Navier-Stokes Equations, Lect. Notes in Math., vol. 749, Springer Verlag, Berlin, Heidelberg, New York 1981. [MR: 548867] [Zbl: 0441.65081] [Google Scholar]
  5. V. GIRAULT, P. A. RAVIART, An analysis of upwind schemes for the Navier-Stokes equations, SIAM J. Numer. Anal. 19 (1982) 2, 312-333. [MR: 650053] [Zbl: 0487.76036] [Google Scholar]
  6. J. HEYWOOD, R. RANNACHER, Finite element approximation of the nonstationary Navier-Stokes problem I. Regularity of solutions and second order estimates for spatial discretization, SIAM J. Numer. Anal. 19 (1982) 2, 275-311. [MR: 650052] [Zbl: 0487.76035] [Google Scholar]
  7. P. JAMET, P. A. RAVIART, Numerical solution of the stationary Navier-Stokes equations by finite element methods, Computing Methods in Applied Sciences and Engineering, Part 1, Lecture Notes in Computer Sciences 10 (1974), Springer Verlag. [MR: 448951] [Zbl: 0285.76007] [Google Scholar]
  8. P. LESAINT, P. A. RAVIART, On a finite element method for solving the Neutron transport equation, in : Mathematical Aspects of Finite Elements in Partial Differential Equations (ed. by C. de Boor), Academic press, 1974. [Zbl: 0341.65076] [Google Scholar]
  9. K. OHMORI, T. USHIJIMA, A Technique of Upstream Type Applied to a Linear Nonconforming Finite Element Approximation of Convective Diffusion Equations, RAIRO Numer. Anal. 18 (1984), 309-332. [EuDML: 193436] [MR: 751761] [Zbl: 0586.65080] [Google Scholar]
  10. F. SCHIEWECK, L. TOBISKA, Eine upwind FEM zur Loesung des stationaeren Navier-Stokes-Problems. WZ TU Magdeburg 31 (1987) 5, 73-76. [MR: 951104] [Zbl: 0638.76032] [Google Scholar]
  11. R. TEMAM, Navier-Stokes Equations. Theory and Numerical Analysis, North. Holland Publ. 1979. [MR: 603444] [Zbl: 0426.35003] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you