Free Access
Volume 24, Number 3, 1990
Page(s) 369 - 401
Published online 31 January 2017
  1. G. ASTARITA,G. MARRUCCI, Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, London, 1974. [Zbl: 0316.73001] [Google Scholar]
  2. C. GUILLOPÉ, J. C. SAUT, Résultats d'existence pour des fluides viscoélastiques à loi de comportement de type différentiel. C.R. Acad. Sci. Paris, 305, série I (1987), 489-492, and article to appear in Nonlinear An., T.M.A. [MR: 916317] [Zbl: 0624.76008] [Google Scholar]
  3. P. HENRICI, Applied and Computational Complex Analysis, vol. I, John Wiley, New York, 1974. [MR: 372162] [Zbl: 0313.30001] [Google Scholar]
  4. G. IOOSS, Bifurcation et stabilité, Publications Mathématiques d'Orsay, 1973. [MR: 487634] [Google Scholar]
  5. D. D. JOSEPH, Stability of Fluid Motions, vol. I and II, Springer, Berlin-Heidelberg-New York, 1976. [Zbl: 0345.76023] [Google Scholar]
  6. T. KATO, Perturbation Theory for Linear Operators, Springer, Berlin-Heidel-berg-New York, 1966. [MR: 203473] [Zbl: 0148.12601] [Google Scholar]
  7. R. W. KOLKKA,G. R. IERLEY,M. G. HANSEN,R. A. WORTHING, On the stability of viscoelastic parallel shear flows, Technical Report, F.R.O.G., Michigan Technological University, 1987. [Google Scholar]
  8. R. W. KOLKKA, D. S. MALKUS,M. G. HANSEN,G. R. IERLEY,R. A. WORTHING, Spurt phenomena of the Johnson-Segalman fluid and related models, J. Non-Newt. Fl. Mech., 29 (1988), 303-335. [Google Scholar]
  9. J. G. OLDROYD, On the formulation of rheological equations of state, Proc. Roy. Soc. London, A 200 (1950), 523-541. [Zbl: 1157.76305] [MR: 35192] [Google Scholar]
  10. G. PRODI, Theoremi di tipo locale per il sistema di Navier-Stokes e la stabilita delle soluzione stazionarie, Rend. Sem. Univ. Padova, 32 (1962), 374-397. [EuDML: 107089] [MR: 189354] [Zbl: 0108.28602] [Google Scholar]
  11. M. RENARDY, W. J. HRUSA,J. A. NOHEL, Mathematical Problems in Viscoelasticity, Longman, New York, 1987. [MR: 919738] [Zbl: 0719.73013] [Google Scholar]
  12. D. H. SATTINGER, Topics in Stability and Bifurcation Theory, Lectures Notes in Mathematics, 309, Springer, Berlin-Heidelberg-New York, 1973. [MR: 463624] [Zbl: 0248.35003] [Google Scholar]
  13. W. R. SCHOWALTER, Behavior of complex fluids at solid boundaries, J. Non-Newt. Fl. Mech., 29 (1988), 85. [Google Scholar]
  14. J. YERUSHALMI,S. KATZ,R. SHINNAR, The stability of steady shear flows of some viscoelastic fluids, Chem. Eng. Sc., 25 (1970), 1891-1902. [Google Scholar]
  15. J. K. HUNTER,M. SLEMROD, Viscoelastic fluid flow exhibiting hysteritic phase changes, Phys. Fluids 26 (1983), 2345-2351. [Zbl: 0529.76009] [Google Scholar]
  16. D. S. MALKUS,J. A. NOHEL,B. J. PLOHR, Time-dependent shear flow of a non-Newtonian fluid, in Contemporary Mathematics, vol. 100, ed. W. B. Lindquist, A.M.S. (1989), 91-110. [MR: 1033511] [Zbl: 0683.76003] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you