Free Access
Issue
ESAIM: M2AN
Volume 24, Number 4, 1990
Page(s) 523 - 553
DOI https://doi.org/10.1051/m2an/1990240405231
Published online 31 January 2017
  1. A. AUSLENDER (1976), Optimisation, méthodes numériques. Masson, Paris. [MR: 441204] [Zbl: 0326.90057]
  2. J. CEA (1971), Optimisation : Théories et algorithmes. Dunod. [MR: 298892] [Zbl: 0211.17402]
  3. A. R. CONN,N. GOULD & Ph. TOINT (1986), Testing a class of methods for solving minimization problems with simple bounds on the variables. Report n°86-3, University of Waterloo. [Zbl: 0645.65033]
  4. J. E. DENNIS, R. B. SCHNABEL (1983, Numerical methods for unconstrained optimization and nonlinear equations. Printice-Hall. [MR: 702023] [Zbl: 0579.65058]
  5. I. S. DUFF,J. NOCEDAL &J.K. REID (1987), The use linear programming for solutions of sparse sets of nonlinear equations. SIAM J. Sci. Stat. Comput. vol. 8, N° 2, pp. 99-108. [MR: 879405] [Zbl: 0636.65053]
  6. I. EKELAND & R. TEMAM (1974), Analyse Convexe et problèmes variationnels. Dunod, Gauthier-Villars. [MR: 463993] [Zbl: 0281.49001]
  7. R. FLETCHER (1980), Practical Methods of Optimization, vol. 1, John Wiley, New York. [MR: 585160] [Zbl: 0439.93001]
  8. F. FOGELMAN-SOULIE, P. GALLINARI, Y. LE CUN,S. THIRIA, (1987), Automata networks and artificial intelligence. In F. Fogelman-Soulie, Y. Robert, M. Tchuente (Eds.), Computing on automata networks, Manchester University Press. [MR: 942907]
  9. N. GASTINEL (1966), Analyse numérique linéaire. Hermann, Paris. [MR: 201053] [Zbl: 0151.21202]
  10. D. M. GAY (1981), Computing optimal constrained steps. SIAM J. Sci. Stat. Comput. 2, pp. 186-197. [MR: 622715] [Zbl: 0467.65027]
  11. P. E. GILL &W. MURRAY & (1972), Quasi-Newton methods for unconstrained optimization, The Journal of the Institute of Mathematics and its Applications, vol, 9, pp. 91-108. [MR: 300410] [Zbl: 0264.49026]
  12. P. E. GILL,W. MURRAY &M. H. WRIGHT (1981), Practical Optimization. Academie Press. [Zbl: 0503.90062] [MR: 634376]
  13. M. D. HEBDEN (1973), An algorithm for minimization using exact second derivatives. Atomic Energy Research Establishment report T.P. 515, Harwell, England.
  14. S. KANIEL &A. DAX (1979), A modified Newtons method for unconstrained minimization. SIAM J. Num. Anal., pp. 324-331. [MR: 526493] [Zbl: 0403.65027]
  15. P. LANCASTER (1969), Theory of Matrix. Academie Press, NewYork and London. [Zbl: 0186.05301] [MR: 245579]
  16. P. J. LAURENT (1972), Approximation et Optimisation. Hermann, Paris. [MR: 467080] [Zbl: 0238.90058]
  17. Y. LE CUN (1987), Modèles connectionnistes de l'apprentissage. Thèse de doctora, Université de Paris VI.
  18. MINOUX (1983), Programmation Mathématique. Tomel, Dunod. [Zbl: 0546.90056]
  19. M. MINSKY & S. PAPERT (1969), Perceptrons. Cambridge, MA : MIT Press.
  20. J. J. MORÉ (1978), The Levenberg-Marquart algorithm : implementation and theory. Lecture Notes in Mathematics 630, G. A. Waston, ed., Springer-Verlag, Berlin-Heidelberg-New York, pp. 105-116. [MR: 483445] [Zbl: 0372.65022]
  21. J. J. MORÉ (1983), Recent developments in algorithm and software for Trust Region Methods. Mathematical Programming, The State of the Art, Springer, Berlin, pp. 258-287. [MR: 717404] [Zbl: 0546.90077]
  22. J. J. MORÉ&D. C. SORENSEN (1979), On the use of directions of negative curvature in a modified Newton method. Math. Prog. 16, pp. 1-20. [MR: 517757] [Zbl: 0394.90093]
  23. J. J. MORÉ & D. C. SORENSEN (1981), Computing a trust region step. Argonne National Laboratory report, Argonne, Illinois. [Zbl: 0551.65042]
  24. H. MUKAI&E. POLAK (1978), A second order method for unconstrained optimization. J.O.T.A. vol. 26, pp. 501-513. [MR: 526650] [Zbl: 0373.90068]
  25. J. P. PENOT &A. ROGER, Updating the spectrum of a real matrix. Mathematics of Computation.
  26. M. J. D. POWELL (1975), Convergence properties of a class of minimization algorithms. O. L. Mangazarian, R. R. Meyer, S. M. Robinson Editors, Nonlinear prograrnming 2 pp. 1-27, Academic press, New York. [MR: 386270] [Zbl: 0321.90045]
  27. REINSCH (1967), Smoothing by spline functions. Numer. Math. 10, 177-183. [EuDML: 131782] [MR: 295532] [Zbl: 0161.36203]
  28. REINSCH (1971), Smoothing by spline functions II. Numer. Math. 16, 451-454. [EuDML: 132051] [Zbl: 1248.65020] [MR: 1553981]
  29. D. E. RHUMELHART &J. C. MCCLELLAND (1986) (Eds.), Parallel Distributed Processing. Cambridge, MA : MIT Press.
  30. F. ROBERT &S. WANG (1988), Implementation of a Neural Network on a Hypercube F.P.S. T20. Proceeding of IF1P WG 10.3 Working Conference on Parallel Processing. Pisa : Italy, 25-27 April. North-Holland.
  31. R. T. ROCKAFELLAR (1970), Convex Analysis. Princeton University Press, Princeton, New Jersey. [MR: 274683] [Zbl: 0193.18401]
  32. A. ROGER (1987), Mise à jour du spectre d'une matrice symétrique, Rapport de recherche SNEA (P), n° AR/87-970.
  33. S. ROUSSET, A. SCHREIBER &S. WANG (1988), Modélisation et simulation connexionniste de l'identification des visages en contexte. Le système FACENET RR 742 -M-. IMAG Grenoble.
  34. G. A. SHULTZ, R. B. SCHNABEL & R. H. BYRD (1985), A family of trust-regionbased algorithms for unconstrained minimization with strong global convergence properties. SIAM Journal on Numerical Analysis 22, pp. 47-67. [MR: 772882] [Zbl: 0574.65061]
  35. G. A. SHULTZ,R. B. SCHNABEL & R. H. BYRD (1988), Approximate solution of the trust region problem by minimization over two-dimensional subspaces Mathematical Programming. Vol. 40, pp. 247-263, North-Holland. [MR: 941311] [Zbl: 0652.90082]
  36. D. C. SORENSEN (1982), Newton's method with a model trust region modification. SIAM J. Numer. Anal. vol. 19, n°2, pp. 409-426. [MR: 650060] [Zbl: 0483.65039]
  37. G. W. STEWART (1973), Introduction to matrix computation. Academic Press, New York. [MR: 458818] [Zbl: 0302.65021]
  38. S. WANG (1988), Implementation of threshold automata networks with multilayers on a Hypercube F.P.S. T20. RR 725 -M-. IMAG, Grenoble.
  39. S. WANG, H. YÉ & F. ROBERT (1988), A PNML neural network for isolated words recognition. Proceedings of nEuro '88. First european conference on neural network, 6-9 Juin 1988 : Paris.
  40. Y. YUAN (1984), An example of only linear convergence of trust region algorithms for nonsmooth optimization. IMA Journal of Numerical Analysis 4, pp. 327-335. [MR: 752609] [Zbl: 0555.65037]
  41. Y. YUAN (1985), On the superlinear convergence of a trust region algorithm for nonsmooth optimization. Mathematical Programming, vol. 3, pp. 269-285. North-Holland. [MR: 783392] [Zbl: 0577.90066]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you