Free Access
Issue
ESAIM: M2AN
Volume 24, Number 6, 1990
Page(s) 765 - 783
DOI https://doi.org/10.1051/m2an/1990240607651
Published online 31 January 2017
  1. L. ABRAHAMSSON and S. OSHER, Monotone difference schemes for singular perturbation problems, SIAM J. Numer. Anal., 19 (1982), pp. 979-992. [MR: 672572] [Zbl: 0507.65039] [Google Scholar]
  2. A. E. BERGER, H. HAN and R. B. KELLOGG, On the behaviour of the exact solution and the error in a numerical solution of a turning point problem, Proc. BAIL II Conf., J. J. H. Miller, ed., Boole Press, Dublin, 1982, pp. 13-27. [MR: 737567] [Zbl: 0511.65063] [Google Scholar]
  3. A. E. BERGER, A note concerning the El-Mistikawy Werle exponential finite difference scheme for a boundary turning point problem, Proc. BAIL III Conf., J. J. H. Miller, éd., Boole Press, Dublin, 1984, pp. 145-150. [MR: 774611] [Zbl: 0673.65046] [Google Scholar]
  4. E. BOHL, Finite Modelle gewöhnlicher Randwertaufgaben, B. G. Teubner, Stuttgart, 1981. [MR: 633643] [Zbl: 0472.65070] [Google Scholar]
  5. D. L. BROWN and J. LORENZ, A high order method for stiff boundary-value problems with turning points, SIAM J. Sci. Statist. Comp., 8 (1987), pp. 790-805. [MR: 902743] [Zbl: 0635.65089] [Google Scholar]
  6. P. A. FARRELL and E. C. GARTLAND, A uniform convergence result for a turning point problem, Proc. BAIL V Conf., Guo Ben-yu et al., ed., Boole Press, Dublin, 1988, pp. 127-132. [Zbl: 0685.65073] [Google Scholar]
  7. R. B. KELLOGG and A. TSAN, Analysis of some difference approximations for a singular perturbation problem without turning points, Math. Comp., 32 (1978), pp. 1025-1039. [MR: 483484] [Zbl: 0418.65040] [Google Scholar]
  8. H.-O. KREISS, N. NICHOLS and D. L. BROWN, Numerical methods for stiff two-point boundary value problems, SIAM J. Numer. Anal., 23 (1986), pp. 325-368. [MR: 831622] [Zbl: 0608.65049] [Google Scholar]
  9. V. D. LISEIKIN and N. N. YANENKO, On the numerical solution of equations with interior and exterior boundary layers on a non-uniform mesh, Proc. BAIL III Conf., J.J.H. Miller, ed., Boole Press, Dublin, 1984, pp. 68-80. [MR: 774607] [Zbl: 0672.65070] [Google Scholar]
  10. V. D. LISEIKIN and V. E. PETRENKO, On numerical solution of nonlinear singularly perturbed problems (Russian), Preprint 687, SO AN SSSR, Computer Center, Novosibirsk, 1987. [MR: 933089] [Zbl: 0658.65074] [Google Scholar]
  11. J. LORENZ, Stabïlity and monotonicity properties of stiff quasilinear boundary problems, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 12 (1982), pp. 151-175. [MR: 735755] [Zbl: 0546.34046] [Google Scholar]
  12. W. L. MIRANKER, Numerical Methods for Stiff Equations and Singular Perturbation Problems, D. Reidel, Dordrecht, Boston and London, 1981. [MR: 603627] [Zbl: 0454.65051] [Google Scholar]
  13. J. M. ORTEGA and W. C. RHEINBOLDT, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York and London, 1970. [MR: 273810] [Zbl: 0241.65046] [Google Scholar]
  14. S. OSHER, Nonlinear singular perturbation problems and one sided difference schemes, SIAM J. Numer. Anal., 18 (1981), pp. 129-144. [MR: 603435] [Zbl: 0471.65069] [Google Scholar]
  15. R. VULANOVIĆ, On a numerical solution of a type of singularly perturbed boundary value problem by using a special discretization mesh, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 13 (1983), pp. 187-201. [MR: 786443] [Zbl: 0573.65064] [Google Scholar]
  16. R. VULANOVIĆ, A second order uniform numerical method for a turning point problem, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 18, 1 (1988), pp. 17-30. [MR: 1034700] [Zbl: 0693.65051] [Google Scholar]
  17. R. VULANOVIĆ, A uniform numerical method for quasilinear singular perturbation problems without turning points, Computing, 41 (1989), pp. 97-106. [MR: 981673] [Zbl: 0664.65082] [Google Scholar]
  18. R. VULANOVIĆ, On numerical solution of a turning point problem, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 19, 1 (1989), pp. 11-24. [MR: 1100256] [Zbl: 0718.65055] [Google Scholar]
  19. R. VULANOVIĆ, Quasilinear singular perturbation problems and the uniform L1 convergence, Z. angew. Math. Mech., 69 (1989), pp. T130-T132. [MR: 1002357] [Zbl: 0684.34058] [Google Scholar]
  20. R. VULANOVIĆ, On numerical solution of some quasilinear turning point problems, Proc. BAIL V Conf., Guo Ben-yu et al, ed., Boole Press, Dublin, 1988, pp. 368-373. [MR: 990288] [Zbl: 0695.65056] [Google Scholar]
  21. A. I. ZADORIN and V. N. IGNAT'EV, Numerical solution of an equation with a small parameter multiplying the highest derivative (Russian), Zh. Vychisl. Mat. i Mat. Fiz., 23 (1983), pp. 620-628. [MR: 706887] [Zbl: 0527.65061] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you