Free Access
Issue
ESAIM: M2AN
Volume 25, Number 2, 1991
Page(s) 213 - 252
DOI https://doi.org/10.1051/m2an/1991250202131
Published online 31 January 2017
  1. C. BAIOCCHI [ 1977] Estimations d'erreur dans L∞ pour les inéquations à obstacle In Mathematical Aspects of Finite Element Methods, Rome, 1975 Springer Lecture Notes Math 606, pp 27-34 [MR: 488847] [Zbl: 0374.65053]
  2. J. W. BARRETT and C. M. ELLIOTT [ 1989a] Finite element approximation of a plasma equilibrum problem IMA J Numer Anal 9, 443-464 [MR: 1030641] [Zbl: 0681.76114]
  3. J. W. BARRETT and C. M. ELLIOTT [ 1989b] Remarks concerning a free boundary problem arising in the theory of liquid drops and plasma physics Proc Roy Soc Edin A 111, 169-181 [MR: 985997] [Zbl: 0668.76137]
  4. T. B. BENJAMIN and A. COCKER [ 1984] Liquid drops suspended by soap filmsPart II Proc. Roy. Soc. Lond. A 394, 33-45 [MR: 763503] [Zbl: 0573.76091]
  5. H. BERESTYCKI and H. BREZIS [ 1980] On a free boundary problem arising in plasma physics Nonlinear Analysis 4, 415-436 [MR: 574364] [Zbl: 0437.35032]
  6. G. CALOZ [ 1984] A free boundary problem related to axisymmetric MHD equilibria existence and numerical approximation of solutions Report of Dept Mathematics, Lausanne
  7. G. CALOZ[ 1987] : Simulation numérique des équilibres d'un plasma dans un tokomak : modélisation et études mathématiques. Thesis 650 of Dept. Mathematics, EPF-Lausanne.
  8. G. CALOZ [ 1988] : Approximation by finite element method of the model plasma problem. Dept. of Mathematics, University of Maryland. [Zbl: 0712.76069]
  9. R. CHAKRABARTI [ 1988] : Numerical solution of some free boundary problems. Ph. D. Thesis, Imperial College.
  10. P. G. CIARLET [ 1988] : Introduction to Numerical Linear Algebra and Optimisation. C.U.P., Cambridge. [MR: 1015713] [Zbl: 0672.65001]
  11. P. G. CIARLET and P. RAVIART [ 1973] : Maximum principle and uniform convergence for the finite element method. Comp. Meth. Appl. Mech. Eng. 2, 17-31. [MR: 375802] [Zbl: 0251.65069]
  12. A. COCKER, A. FRIEDMAN and J. B. MCLEOD [ 1986] : A variational inequality associated with liquid on a soap film. Arch. Rat. Mech. Anal. 93, 15-45. [MR: 822334]
  13. P. CORTEY-DUMONT [ 1985b] : Sur les inéquations variationnelles à opérateur non coercif. M2AN.-R.A.I.R.O., 19, 195-212. [EuDML: 193446] [MR: 802593]
  14. P. CORTEY-DUMONT [ 1985b] : On finite element approximation in the L∞-norm of variational inequalities. Numer. Math., 47, 45-57. [EuDML: 133022] [MR: 797877] [Zbl: 0574.65064]
  15. M. CROUZEIX and J. RAPPAZ [ 1987] : On numerical approximation in bifurcation theory. Report of the Department of Mathematics, EPF-Lausanne. [Zbl: 0687.65057]
  16. N. DYN and W. E. FERGUSON [ 1983] : The numerical solution of equality-constrained quadratic programming problems. Math. Comp., 163, 165-170. [MR: 701631] [Zbl: 0527.49030]
  17. R. FALK [ 1974] : Error estimates for the approximation of a class of variational inequalities.Math. Comp. 28, 963-971. [MR: 391502] [Zbl: 0297.65061]
  18. A. FRIEDMAN [ 1982] : Variational Principles and Free Boundary Problems. J. Wiley, New York. [MR: 679313] [Zbl: 0564.49002]
  19. V. GIRAULT and P. A. RAVIART [ 1982] : An analysis of upwind schemes for the Navier-Stokes equations SIAM. J. Numer. Anal. 19, 312-333. [MR: 650053] [Zbl: 0487.76036]
  20. P. GRISVARD [ 1985] : Elliptic Problems in Nonsmooth Domains, Pilman, Boston. [MR: 775683] [Zbl: 0695.35060]
  21. F. KlKUCHl, K. NAKAZOTA and T. USHIJIMA [ 1984] : Finite element approximation of a nonlinear eigenvalue problem related to MHD equilibria. Japan J. Appl. Math. 1, 369-403. [MR: 840803] [Zbl: 0634.76117]
  22. D. KINDERLEHRER and J. SPRUCK [ 1978] : Regularity in free boundary problems. Ann. Scuola N. Sup. Pissa 5, 131-148. [EuDML: 83772] [MR: 481511] [Zbl: 0409.76095]
  23. D. KINDERLEHRER and G. STAMPACCHIA [ 1980] : An Introduction to Variational Inequalities and Their Applications. Academic Press, New York. [MR: 567696] [Zbl: 0457.35001]
  24. J. A. NITSCHE [ 1977]: L∞-convergence of finite element approximations. In: Mathematical Aspects of Finite Element Methods, Rome. 1975. Springer Lectures Notes Math., 606,pp. 1-15. [EuDML: 273799] [MR: 488848] [Zbl: 0362.65088]
  25. J. RAPPAZ [ 1984] : Approximation of a nondifferentiable nonlinear problem related to MHD equuibria. Numer. Math. 45, 117-133. [EuDML: 132956] [MR: 761884] [Zbl: 0527.65073]
  26. J. F. RODRIGUES [ 1987] : Obstacle Problems in Mathematical Physics, North Holland, Amsterdam. [MR: 880369] [Zbl: 0606.73017]
  27. A. SCHATZ[ 1985] : An introduction to the analysis of the error in the finite element method for second-order elliptic boundary value problems. In : Numerical Analysis Lancaster 1984. Springer Lecture Notes, Math., 1129, pp. 94-139. [MR: 799031] [Zbl: 0577.65096]
  28. M. SERMANGE [ 1979] : Une méthode numérique en bifurcation - une application à un problème à frontière libre de la physique des plasmas. Appl. Math. Optim. 5, 127-151. [MR: 533616] [Zbl: 0393.65026]
  29. G. STRANG and G. FIX [ 1973] : An Analysis of the Finite Element Method Prentice-Hall, New Jersey. [MR: 443377] [Zbl: 0356.65096]
  30. R. TEMAM [ 1975] : A nonlinear eigenvalue problem : equilibrium shape of a confined plasma. Arch. Rat. Mech. Anal. 60, 51-73. [MR: 412637] [Zbl: 0328.35069]
  31. R. TEMAM [ 1977] : Remarks on a free boundary problem arising in plasma physics. Comm. in P.D.E. 2, 563-585. [MR: 602544] [Zbl: 0355.35023]
  32. V. THOMEE [ 1984] : Galerkin Finite Element Methods for Parabolic Problems. Lect.Notes Math. (Springer) # 1054. [MR: 744045] [Zbl: 0528.65052]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you