Free Access
Volume 25, Number 4, 1991
Page(s) 441 - 463
Published online 31 January 2017
  1. R. A. ADAMS, Sobolev Spaces, Academie Press, New York (1975). [MR: 450957] [Zbl: 0314.46030] [Google Scholar]
  2. I. BABUŠKA, A. K. AZIZ, Survey Lectures on the Mathematical Foundations of the Finite Element Method from The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Academic Press, New York (1972). [MR: 421106] [Zbl: 0268.65052] [Google Scholar]
  3. I. BABUŠKA, J. E. OSBORN, Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods, SIAM J. Numer. Anal., 20, No. 3 (1983) 510-536. [MR: 701094] [Zbl: 0528.65046] [Google Scholar]
  4. R. E. BANK, D. J. ROSE, Some Error Estimates fot the Box Method, SIAM J. Numer. Anal., 24, No. 4 (1987) 777-787. [MR: 899703] [Zbl: 0634.65105] [Google Scholar]
  5. F. BREZZI, P. MARINI, P. PIETRA, Méthodes d'éléments finis et schema de Scharfetter-Gummel, C. R. Acad. Sci. Paris, 305, Seriel (1987) 599-604. [MR: 917577] [Zbl: 0623.65131] [Google Scholar]
  6. F. BREZZI, P. MARINI, P. PIETRA, Two-Dimensional Exponential Fitting and Applications to Semiconductor Device Equations, SIAM J. Numer. Anal. 26 (1989) 1342-1355. [MR: 1025092] [Zbl: 0686.65088] [Google Scholar]
  7. F. BREZZI, L. D. MARINI, P. PIETRA Numerical Solution of Semiconductor Devices, Comp. Meth. Appl. Mech. Engin, 75 (1989) 493-514. [MR: 1035759] [Zbl: 0698.76125] [Google Scholar]
  8. E. BUTURLA, P. COTTRELL, B. M. GROSSMAN, K. A. SALSBURG, Finite-Element Analysis of Semiconductor Devices The FIELDAY Program, IBM J. Res. Develop., 25, No. 4 (1981) 218-231. [Google Scholar]
  9. P. G. CIARLET, P. A. RAVIART, General Lagrange and Hermite Interpolation in Rn with Applications to Finite Element Methods, Arch. Rat. Mech. Anal., 46 (1972) 177-199. [MR: 336957] [Zbl: 0243.41004] [Google Scholar]
  10. B. DELAUNAY, Sur la sphere vide, Izv. Akad. Nauk. SSSR, Math and Nat. Sci. Div., No. 6 (1934) 793-800 [Zbl: 0010.41101] [Google Scholar]
  11. G. L. DIRICHLET, Uber die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen, J. Reine Angew. Math., 40, No. 3 (1850) 209-227. [EuDML: 147457] [Google Scholar]
  12. V. GIRAULT, P. A. RAVIART, Finite Element Approximation of the Navier-Stokes Equations, Lect. Notes in Math., No. 749, Springer-Verlag (1979). [MR: 548867] [Zbl: 0413.65081] [Google Scholar]
  13. H. K. GUMMEL, A Self-Consistent Iterative Scheme for One-Dimensional Steady State Transistor Calculation, IEEE Trans. Elec. Dev., ED-11 (1964) 455-465. [Google Scholar]
  14. B. HEINRICH, Finite difference methods on irregular networks, Birkhauser Verlag, Basel-Boston-Stuttgart (1987). [MR: 875416] [Zbl: 0623.65096] [Google Scholar]
  15. T IKEDA, Maximum Principle in Finite Element Models for Convection-Diffusion Phenomena, North-Holland (1983) [Zbl: 0508.65049] [Google Scholar]
  16. R. H. LI, Generalized Difference Methods for a Nonlinear Dirichlet Problem, SIAM J. Numer. Anal. Vol. 24, No. 1 (1987) 77-88 [MR: 874736] [Zbl: 0626.65091] [Google Scholar]
  17. R. H. MACNEAL, An Asymmetrical Finite Difference Network, Quart. Appl. Math., 11 (1953) 295-310. [MR: 57631] [Zbl: 0053.26304] [Google Scholar]
  18. P. A. MARKOWICH, M. ZLÁMAL, Inverse-Average-Type Finite Element Discretisations of Self adjoint Second-Order Elliptic Problems, Math. Comput., 51, No. 184 (1988) 431-449. [MR: 930223] [Zbl: 0699.65074] [Google Scholar]
  19. B. J. MCCARTIN, Discretization of the Semiconductor Device Equations from New Problems and New Solutions for Device and Process Modelling, ed. J. J. H. Miller, Boole Press, Dublin (1985). [Google Scholar]
  20. J. J. H. MILLER, S. WANG, C. H. WU, A Mixed Finite Element Method for the Stationary Semiconductor Continuity Equations, Engin. Comput., 5, No. 4 (1988) 285-288. [MR: 1171713] [Google Scholar]
  21. M. S. MOCK, Analysis of a Discretization Algorithm for Stationary Continuity Equations in Semiconductor Device Models, COMPEL, Vol. 2, No. 4 (1983) 117-139. [Zbl: 0619.65116] [Google Scholar]
  22. J. T. ODEN, J. K. LEE, Theory of Mixed and Hybrid Finite-Element Approximations in Linear Elasticity from IUTAM/IUM Symp. Applications of Methods of Functional Analysis to Problems of Mechanics, Lect. Notes in Math. No. 503, Springer-Verlag (1976). [MR: 670098] [Zbl: 0361.73031] [Google Scholar]
  23. J. T. ODEN, J. N. REDDY, An Introduction to the Mathematical Theory of Finite Elements, John Wiley & Sons, New York (1976). [MR: 461950] [Zbl: 0336.35001] [Google Scholar]
  24. W. V. VAN ROOSBROECK, Theory of Flow of Electrons and Holes in Germanium and Other Semiconductors, Bell Syst. Tech. J., 29 (1950) 560-607 [Google Scholar]
  25. R. S. VARGA, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, New Jersey (1962). [MR: 158502] [Zbl: 0133.08602] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you