Free Access
Issue
ESAIM: M2AN
Volume 25, Number 6, 1991
Page(s) 711 - 748
DOI https://doi.org/10.1051/m2an/1991250607111
Published online 31 January 2017
  1. F. ABERGEL and R. TEMAM, On some control problems in fluid mechanics. Theoret. Comput. Fluid Dynamics. To appear. [Zbl: 0708.76106] [Google Scholar]
  2. R. ADAMS, Sobolev Spaces. Academic, New York, 1975. [MR: 450957] [Zbl: 0314.46030] [Google Scholar]
  3. I. BABUŠKA, The finite element method with Lagrange multipliers. Numer. Math. 16 179-192, 1973. [EuDML: 132183] [MR: 359352] [Zbl: 0258.65108] [Google Scholar]
  4. I. BABUŠKA and A. AZIZ, Survey lectures on the mathematical foundations of the finite element method. The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (Ed. by A. Aziz), Academic, New York, 3-359, 1973. [MR: 421106] [Zbl: 0268.65052] [Google Scholar]
  5. F. BREZZI, On the existence, uniqueness, and approximation of saddle-point problems arising from Lagrange multipliers. RAIRO Model. Math. Anal Numér. 8-32, 129-151, 1974. [EuDML: 193255] [MR: 365287] [Zbl: 0338.90047] [Google Scholar]
  6. F. BREZZI, A survey of mixed finite element methods. Finite Elements, Theory and Application (Ed. by D. Dwoyer, M. Hussaini and R. Voigt), Springer, New York, 34-49, 1988. [MR: 964479] [Zbl: 0665.73058] [Google Scholar]
  7. F. BREZZI, J. RAPPAZ andP.-A. RAVIART, Finite-dimensional approximation of nonlinear problem. Part I : branches of nonsingular solutions. Numer. Math. 36 1-25, 1980. [EuDML: 132686] [MR: 595803] [Zbl: 0488.65021] [Google Scholar]
  8. L. CATTABRIGA, SU un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Univ. Padova 31 308-340, 1961. [EuDML: 107065] [MR: 138894] [Zbl: 0116.18002] [Google Scholar]
  9. P. CIARLET, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978. [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  10. M. CROUZEIX, Approximation des problèmes faiblement non linéaires. To appear. [Google Scholar]
  11. V. GIRAULT and P.-A. RAVIART, Finite Element Methods for Navier-Stokes Equations. Springer, Berlin, 1986. [MR: 851383] [Zbl: 0585.65077] [Google Scholar]
  12. M. GUNZBURGER, Finite Element Methods for Incompressible Viscous Flows :A Guide to Theory, Practice and Algorithms. Academic, Boston, 1989. [MR: 1017032] [Google Scholar]
  13. M. GUNZBURGER, L. HOU, Treating inhomogeneous essential boundary conditions in finite element methods. SIAM J. Num. Anal., To appear. [Zbl: 0748.76073] [MR: 1154272] [Google Scholar]
  14. M. GUNZBURGER, L. HOU and T. SVOBODNY, Boundary velocity control of incompressible flow with an application to viscous drag reduction. SIAM J. Opt. Contr., To appear. [MR: 1145711] [Zbl: 0756.49004] [Google Scholar]
  15. M. GUNZBURGER, L. HOU and T. SVOBODNY, Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with distributed and Neumann controls. Math. Comp. 57, 123-151, 1991. [MR: 1079020] [Zbl: 0747.76063] [Google Scholar]
  16. L. Hou, Analysis and finite element approximation of some optimal control problems associated with the Navier-Stokes equations. Ph. D. Thesis, Carnegie Mellon University, Pittsburgh, 1989. [Google Scholar]
  17. J. LIONS, Some Aspects of the Optimal Control of Distributed Parameter Systems. SIAM, Philadelphia, 1972. [Zbl: 0275.49001] [Google Scholar]
  18. M. SCHECTER, Principles of Functional Analysis. Academic, New York, 1971. [MR: 445263] [Zbl: 0211.14501] [Google Scholar]
  19. J. SERRIN, Mathematical principles of classical fluid mechanics. Handbüch der Physik VIII/1 (ed. by S. Flügge and C. Truesdell) Springer, Berlin, 125-263, 1959. [MR: 108116] [Google Scholar]
  20. R. TEMAM, Navier-Stokes Equations. North-Holland, Amsterdam, 1979. [MR: 603444] [Zbl: 0426.35003] [Google Scholar]
  21. R. TEMAM, Navier-Stokes Equations and Nonlinear Functional Analysis. SIAM, Philadelphia, 1983. [MR: 764933] [Zbl: 0833.35110] [Google Scholar]
  22. R. VERFÜRTH, Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition. Numer. Math. 50 697-621, 1987. [EuDML: 133179] [MR: 884296] [Zbl: 0596.76031] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you