Free Access
Issue
ESAIM: M2AN
Volume 25, Number 6, 1991
Page(s) 783 - 807
DOI https://doi.org/10.1051/m2an/1991250607831
Published online 31 January 2017
  1. E. ALARCON, L. ABIA, A. REVERTER, On the possibility of adaptive boundary elements, in : Accuracy Estimates and Adaptive Refinements in Finite Element Computations (AFREC), Lisbon, 1984.
  2. E. ALARCON, A. REVERTER, J. MOLINA, Hierarchical boundary elements. Comput. and Structures, 20 (1985) 151-156. [Zbl: 0581.73095]
  3. E. ALARCON, A. REVERTER, p-adaptive boundary elements. Internat. J.Numer. Methods Engrg. 23 (1986) 801-829. [Zbl: 0593.65068]
  4. I. BABUŠKA, M. SURI, The p and h-p versions of the finite element method, An Overview. Computer Methods in Applied Mechanics and Engineering 80 (1990) 5-26. [MR: 1067939] [Zbl: 0731.73078]
  5. I. BABUŠKA, A. K. AZIZ, Survey lectures on the mathematical foundations of the finite element method, in : The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (ed. by A. K. Aziz), Academic Press, New York (1972) 3-359. [MR: 421106] [Zbl: 0268.65052]
  6. I. BABUŠKA, M. DORR, Error estimates for the combined h and p version of the finite element method. Numer. Math. 37 (1981) 257-277. [EuDML: 132730] [MR: 623044] [Zbl: 0487.65058]
  7. I. BABUŠKA, B. GUO, M. SURI, Implementation of non-homogeneous Dirichleboundary conditions in the p-version of the finite element method. Impact of Computing in Science and Engineering 1 (1989) 36-63. [Zbl: 0709.65079]
  8. I. BABUŠKA, B. A. SZABO, I. N. KATZ, The p-version of the finite element method. SIAM J. Numer. Anal. 18 (1981) 515-545. [MR: 615529] [Zbl: 0487.65059]
  9. I. BABUŠKA, M. SURI, The treatment of nonhomogeneous Dirichlet boundar conditions by the p-version of the finite element method, Num. Math. 55 (1989) 97-121. [EuDML: 133346] [MR: 987158] [Zbl: 0673.65066]
  10. I. BABUŠKA, M. SURI, The h-p version of the finite element method with quasi uniform meshes, RAIRO Modél. Math. Anal. Numér. 21 (1987) 199-238. [EuDML: 193500] [MR: 896241] [Zbl: 0623.65113]
  11. P. G. ClARLET, The finite element method for elliptic problems. North Holland Publishing Co, Amsterdam, 1987. [Zbl: 0383.65058]
  12. M. COSTABEL, E. P. STEPHAN, The normal derivative of the double layer potential on polygons and Galerkin approximation. Appl. Anal. 16 (1983) 205-228. [MR: 712733] [Zbl: 0508.31003]
  13. M. COSTABEL, E. P. STEPHAN, The method of Mellin transformation for boundary integral equations on curves with corners, Numerical Solutions of Singular Intégral Equations (ed. A. Gerasoulis, R. Vichnevetsky) IMACS (1984) 95-102.
  14. M. COSTABEL, E. P. STEPHAN, Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximations, in : Mathematical Models and Methods in Mechanics(1981), W. Fiszdon and K. Wilmânski, editors, Banach Center Publications, Vol. 5, 15, pp. 175-251, PWN-Polish Scientific Publishers, Warsaw (1985). [EuDML: 268004] [MR: 874845] [Zbl: 0655.65129]
  15. M. R. DORR, The approximation theory for the p-version of the finite element method. SIAM J. Numer. Anal. 21 (1984) 1180-1207. [MR: 765514] [Zbl: 0572.65074]
  16. W. GUI, I. BABUŠKA, he h-p versions of the finite element method in one dimension. Parts 1-3, Numer. Math. 49 (1986) 577-683. [MR: 861522]
  17. S. HILDEBRANDT, E. WlENHOLTZ, Constructive proofs of representation theorems in separable Hilbert space, Comm. Pure Appl. Math. 17 (1964) 369-373. [MR: 166608] [Zbl: 0131.13401]
  18. J. L. LIONS, E. MAGENES, Non-Homogeneous Boundary Value Problems and Applications I, Springer-Verlag, Berlin, Heidelberg, New York, 1972. [Zbl: 0223.35039]
  19. T. VON PETERSDORFF, Boundary value problems of elasticity in polyhedra-Singularities and approximation by boundary elements, Ph. D. Thesis, TH Darmstadt (1989).
  20. E. RANK, Adaptive Boundary Element Methods, in : Boundary Elements 9, Vol. 1 (ed C A. Brebbia, W. L. Wendland, G. Kuhn), Springer-Verlag, Heidelberg (1987) 259-273. [MR: 965323]
  21. E. P. STEPHAN, M. SURI, On the convergence of the p-version of the boundary element Galerkin method, Math. Comp. 52 (1989) 31-48. [MR: 947469] [Zbl: 0661.65118]
  22. E. P. STEPHAN, W. L. WENDLAND, Remarks to Galerkin and least squaresmethods with finite elements for general elliptic problem. Manuscripta Geodaetica 1 (1976) 93-123. [Zbl: 0353.65067]
  23. E. P. STEPHAN, W. L. WENDLAND, An augmented Galerkin procedure for the boundary integral method applied to two-dimensional screen and crack problems. Appl. Anal. 18 (1984) 183-219. [MR: 767500] [Zbl: 0522.73083]
  24. E. P. STEPHAN, W. L. WENDLAND, A hypersingular boundary integral method for two-dimensional screen and crack problem, Arch. Rational Mech. Anal. 112 (1990) 363-390. [MR: 1077265] [Zbl: 0725.73091]
  25. H. TRIEBEL, Interpolation Theory, Function Space, Differential Operators. North-Holland Publishing Co., Amsterdam, 1987. [MR: 503903] [Zbl: 0387.46032]
  26. W. L. WENDLAND, On some mathematical aspects of boundary element methods for elliptic problems, in : J. Whiteman, editor, Mathematics of Finite Elements and Applications V, pp. 193-227, Academic press, London, 1985. [MR: 811035] [Zbl: 0587.65079]
  27. W. L. WENDLAND, Splines versus trigonometrie polynomials, h-versus p-version in 2D boundary integral methods. In D. Griffïths, R. Mitchell eds., Dundee Biennial Conference on Numerical Analysis, 1985. 25, n° 6, 1991. [Zbl: 0653.65082]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you