Free Access
Volume 26, Number 2, 1992
Page(s) 331 - 345
Published online 31 January 2017
  1. D. N. ARNOLD, J. DOUGLAS and C. P. GUPTA, A Family of Higher Order Mixed Finite Element Methods for Plane Elasticity, Numer. Math., 45, 1-22 (1984). [EuDML: 132950] [MR: 761879] [Zbl: 0558.73066]
  2. I. BABUSKA, Error-bounds for Finite Element Method, Numer. Math., 16, 322-333 (1971). [EuDML: 132037] [MR: 288971] [Zbl: 0214.42001]
  3. F. BREZZI, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO Model. Math. Anal. Numér., 8, 129-151 (1974). [EuDML: 193255] [MR: 365287] [Zbl: 0338.90047]
  4. P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland (1978). [MR: 520174] [Zbl: 0383.65058]
  5. P. CLEMENT, Approximation by finite elements using local regularization, RAIRO Modél. Math. Anal. Numér., 8, 77-84 (1975). [EuDML: 193271] [MR: 400739] [Zbl: 0368.65008]
  6. J. DOUGLAS and J. WANG, An absolutely stabilized finite element method for the Stokes problem, quoted in [12]. [Zbl: 0669.76051]
  7. M. FORTIN and A. FORTIN, A new approach for the FEM simulation of viscoelastic flows, J. Non-Newtonian Fluid Mech., 32, 295-310 (1989). [Zbl: 0672.76010]
  8. M. FORTIN and R. PIERRE, On the convergence of the mixed method of Crochetand Marchal for viscoelastic flows, to appear. [MR: 1016647] [Zbl: 0692.76002]
  9. L. P. FRANCA, Analysis and finite element approximation of compressible and incompressible linear isotropic elasticity based upon a variational principle, Comp. Meth. Appl. Mech. Engrg., 76, 259-273 (1989). [MR: 1030385] [Zbl: 0688.73044]
  10. L. P. FRANCA and T. J. R. HUGHES, Two classes of mixed finite element methods, Comp. Meth. Appl. Mech. Engrg., 69, 89-129 (1988). [MR: 953593] [Zbl: 0629.73053]
  11. L. P. FRANCA, R. STENBERG, Finite element approximation of a new variational principle for compressible and incompressible linear isotropic elasticity, to appear in Appl. Mech. Rev. [MR: 1037580] [Zbl: 0749.73076]
  12. L.P. FRANCA and R. STENBERG, Error analysis of some Galerkin-least-squares methods for the elasticity equations, Rapport INRIA, n° 1054 (1989). [Zbl: 0759.73055]
  13. V. GIRAULT and P. A. RAVIART, Finite Element Methods for Navier-Stokes Equations, Theory and algorithms, Springer Berlin (1978). [MR: 851383] [Zbl: 0585.65077]
  14. J. M. MARCHAL and M. J. CROCHET, A new mixed finite element for calculating viscoelastic flow, J. Non-Newtonian Fluid Mech., 26, 77-114 (1987). [Zbl: 0637.76009]
  15. L. R. SCOTT and M. VOGELIUS, Norm estimates for a maximal right inverse ofthe divergence operator in spaces of piecewise polynomials, RAIRO Modél. Math. Anal. Numér., 19, 111-143 (1985). [EuDML: 193439] [MR: 813691] [Zbl: 0608.65013]
  16. R. STENBERG, A Family of Mixed Finite Elements for the Elasticity Problem, Num. Math., 53, 513-538 (1988). [EuDML: 133289] [MR: 954768] [Zbl: 0632.73063]
  17. R. STENBERG, Error Analysis of some Finite Element Methods for the Stokes Problem, to appear. [MR: 1010601] [Zbl: 0702.65095]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you