Free Access
Volume 26, Number 2, 1992
Page(s) 331 - 345
Published online 31 January 2017
  1. D. N. ARNOLD, J. DOUGLAS and C. P. GUPTA, A Family of Higher Order Mixed Finite Element Methods for Plane Elasticity, Numer. Math., 45, 1-22 (1984). [EuDML: 132950] [MR: 761879] [Zbl: 0558.73066] [Google Scholar]
  2. I. BABUSKA, Error-bounds for Finite Element Method, Numer. Math., 16, 322-333 (1971). [EuDML: 132037] [MR: 288971] [Zbl: 0214.42001] [Google Scholar]
  3. F. BREZZI, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO Model. Math. Anal. Numér., 8, 129-151 (1974). [EuDML: 193255] [MR: 365287] [Zbl: 0338.90047] [Google Scholar]
  4. P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland (1978). [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  5. P. CLEMENT, Approximation by finite elements using local regularization, RAIRO Modél. Math. Anal. Numér., 8, 77-84 (1975). [EuDML: 193271] [MR: 400739] [Zbl: 0368.65008] [Google Scholar]
  6. J. DOUGLAS and J. WANG, An absolutely stabilized finite element method for the Stokes problem, quoted in [12]. [Zbl: 0669.76051] [Google Scholar]
  7. M. FORTIN and A. FORTIN, A new approach for the FEM simulation of viscoelastic flows, J. Non-Newtonian Fluid Mech., 32, 295-310 (1989). [Zbl: 0672.76010] [Google Scholar]
  8. M. FORTIN and R. PIERRE, On the convergence of the mixed method of Crochetand Marchal for viscoelastic flows, to appear. [MR: 1016647] [Zbl: 0692.76002] [Google Scholar]
  9. L. P. FRANCA, Analysis and finite element approximation of compressible and incompressible linear isotropic elasticity based upon a variational principle, Comp. Meth. Appl. Mech. Engrg., 76, 259-273 (1989). [MR: 1030385] [Zbl: 0688.73044] [Google Scholar]
  10. L. P. FRANCA and T. J. R. HUGHES, Two classes of mixed finite element methods, Comp. Meth. Appl. Mech. Engrg., 69, 89-129 (1988). [MR: 953593] [Zbl: 0629.73053] [Google Scholar]
  11. L. P. FRANCA, R. STENBERG, Finite element approximation of a new variational principle for compressible and incompressible linear isotropic elasticity, to appear in Appl. Mech. Rev. [MR: 1037580] [Zbl: 0749.73076] [Google Scholar]
  12. L.P. FRANCA and R. STENBERG, Error analysis of some Galerkin-least-squares methods for the elasticity equations, Rapport INRIA, n° 1054 (1989). [Zbl: 0759.73055] [Google Scholar]
  13. V. GIRAULT and P. A. RAVIART, Finite Element Methods for Navier-Stokes Equations, Theory and algorithms, Springer Berlin (1978). [MR: 851383] [Zbl: 0585.65077] [Google Scholar]
  14. J. M. MARCHAL and M. J. CROCHET, A new mixed finite element for calculating viscoelastic flow, J. Non-Newtonian Fluid Mech., 26, 77-114 (1987). [Zbl: 0637.76009] [Google Scholar]
  15. L. R. SCOTT and M. VOGELIUS, Norm estimates for a maximal right inverse ofthe divergence operator in spaces of piecewise polynomials, RAIRO Modél. Math. Anal. Numér., 19, 111-143 (1985). [EuDML: 193439] [MR: 813691] [Zbl: 0608.65013] [Google Scholar]
  16. R. STENBERG, A Family of Mixed Finite Elements for the Elasticity Problem, Num. Math., 53, 513-538 (1988). [EuDML: 133289] [MR: 954768] [Zbl: 0632.73063] [Google Scholar]
  17. R. STENBERG, Error Analysis of some Finite Element Methods for the Stokes Problem, to appear. [MR: 1010601] [Zbl: 0702.65095] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you