Free Access
Volume 26, Number 2, 1992
Page(s) 365 - 383
Published online 31 January 2017
  1. G. AMIEZ, P. A. GREMAUD, On a numerical approach to Stefan-like problems, Numer. Math., 59 (1991), 71-89. [EuDML: 133540] [MR: 1103754] [Zbl: 0731.65107] [Google Scholar]
  2. A. E. BERGER, H. BREZIS, J. W. C. ROGERS, A numerical method for solving the problem ut - Δƒ(u) = 0, R.A.I.R.O. Model. Math. Anal. Numer. 13, 4 (1979), 297-312. [EuDML: 193344] [MR: 555381] [Zbl: 0426.65052] [Google Scholar]
  3. H. BREZIS, Analyse fonctionnelle, théorie et applications, Masson, Paris, 1983. [MR: 697382] [Zbl: 0511.46001] [Google Scholar]
  4. P. G. CIARLET, The finite element method for elliptic problems, North-Holland, Amsterdam, 1978. [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  5. P. G. CIARLET, P. A. RAVIART, General Lagrange and Hermite interpolation in Rn with applications to finite element methods, Arch. Rational. Mech. Anal., 46 (1972), 177-199. [MR: 336957] [Zbl: 0243.41004] [Google Scholar]
  6. J. F. CIAVALDINI, Analyse numérique d'un problème de Stefan à deux phases par une méthode d'éléments finis, SIAM, J. Numer. Anal., 12, 3 (1975), 464-488. [MR: 391741] [Zbl: 0272.65101] [Google Scholar]
  7. I. I. DANILYUK, On the Stefan problem, Russian Math. Surveys, 40, 5 (1985),157-223. [MR: 810813] [Zbl: 0604.35080] [Google Scholar]
  8. J. J. DROUX, Three-dimensional numerical simulation of solidification by an improved explicit scheme, to appear in Comput. Methods Appl. Mech. Engrg. [Zbl: 0825.73928] [Google Scholar]
  9. C. M. ELLIOTT, Error analysis of the enthalpy method for the Stefan problem, IMA J. Numer. Anal., 7 (1987), 61-71. [MR: 967835] [Zbl: 0638.65088] [Google Scholar]
  10. A. FRIEDMAN, The Stefan problem in several space variables, Trans. Amer. Math. Soc, 133 (1968), 51-87. [MR: 227625] [Zbl: 0162.41903] [Google Scholar]
  11. W. GENTZSH, Numerical solution oflinear and nonlinear parabolic differential equations by a time discretization of third order accuracy, Proceeding of the Third GAMM, Conference on Numerical Methods in Fluid Mechanics, Notes on Numerical Fluid Mechanics, vol. 2, Vieweg & Sohn, Braunschweig, 109-118, 1979. [Google Scholar]
  12. J. W. JEROME, M. E. ROSE, Error estimates for the multidimensional two-phase Stefan problem, Math, of Comp., 39, 160 (1982), 377-414. [MR: 669635] [Zbl: 0505.65060] [Google Scholar]
  13. S. KAMENOMOSTSKAYA, On the Stefan problem, Mat. Sb., 53 (1961), 489-514. [Zbl: 0102.09301] [Google Scholar]
  14. O. LADYZENSKAYA, V. SOLONNIKOV, N. URAL'CEVA, Linear and quasi-linear equations of parabolic type, Trans. Math. Monographs, A.M.S., 1968. [Zbl: 0174.15403] [Google Scholar]
  15. J. L. LIONS, Quelques méthodes de résolution des problèmes aux limites non linéaires, Gauthier-Villars, Paris, 1969. [MR: 259693] [Zbl: 0189.40603] [Google Scholar]
  16. E. MAGENES, R. H. NOCHETTO, C. VERDI, Energy error estimates for a linear scheme to approximate nonlinear parabolic problems, R.A.I.R.O. Model. Math. Anal. Numér., 21, 4 (1987), 655-678. [EuDML: 193519] [MR: 921832] [Zbl: 0635.65123] [Google Scholar]
  17. R. H. NOCHETTO, Error estimates for two-phase Stefan problems in several space variables I : Linear boundary conditions, Calcolo, 22 (1985), 457-499. [MR: 859087] [Zbl: 0606.65084] [Google Scholar]
  18. R. H. NOCHETTO, Error estimates for two-phase Stefan problems in several space variables II : Nonlinear flux conditions, Calcolo, 22 (1985), 501-534. [MR: 859088] [Zbl: 0606.65085] [Google Scholar]
  19. R. H. NOCHETTO, Error estimates for multidimensional singular parabolic problems, Japan J. Appl. Math., 4 (1987), 111-138. [MR: 899207] [Zbl: 0657.65132] [Google Scholar]
  20. R. H. NOCHETTO, A class of non degenerate two-phase Stefan problems in several space variables, Commun, in Partial Diff. Equ., 12, 1 (1987), 21-45. [MR: 869101] [Zbl: 0624.35085] [Google Scholar]
  21. R. H. NOCHETTO, Numerical methods for free boundary problems, Free Boundary Problems : Theory and Applications, K. H. Hoffmann and J. Sprekels (eds.), Pitman, 1988, to appear. [Google Scholar]
  22. R. H. NOCHETTO, C. VERDI, Approximation of degenerate parabolic problems using numerical integration, SIAM J. Numer. Anal., 25, 4 (1988), 784-814. [MR: 954786] [Zbl: 0655.65131] [Google Scholar]
  23. R. H. NOCHETTO, C. VERDI, An efficient linear scheme to approximate parabolic free boundary problems : error estimates and implementation, Math.Comp., 51 (1988), 27-53. [MR: 942142] [Zbl: 0657.65131] [Google Scholar]
  24. R. H. NOCHETTO, C. VERDI, The combined use of a nonlinear Chernoff formula with a regularization procedure for two-phase Stefan problems, Numer. Funct. Anal. Optim., 9 (1987-88), 1177-1192. [MR: 936337] [Zbl: 0629.35116] [Google Scholar]
  25. P. A. RAVIART, The use of numerical integration infinite element methods for solving parabolic equations, in Topics in Numerical Analysis (J. Miller éd.), Academic Press, London (1973), 233-264. [MR: 345428] [Zbl: 0293.65086] [Google Scholar]
  26. C. VERDI, Linear algorithms for solving Stefan-like problems, Free Boundary Boundary Problems : Theory and Applications, K. H. Hoffmann and. Sprekels (eds.), Pitman, 1988, to appear. [MR: 1081758] [Zbl: 0721.65079] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you