Free Access
Volume 26, Number 3, 1992
Page(s) 447 - 467
Published online 31 January 2017
  1. [A] R. A. ADAMS, Sobolev Spaces. Academie Press, New York, 1975. [MR: 450957] [Zbl: 0314.46030] [Google Scholar]
  2. [BC] C. BAIOCCHI & A. CAPELO, Variational and Quasi-variational Inequalities, J. Wiley, Chichester & New York, 1984 (translation of the 1978 italian edition). [MR: 745619] [Zbl: 0551.49007] [Google Scholar]
  3. [BL] A. BENSOUSSAN & J. L. LIONS, Contrôle impulsionnel et inéquations quasi-variationnelles, Dunod, Paris, 1982. [MR: 673169] [Zbl: 0491.93002] [Google Scholar]
  4. [Bl] H. BRÉZIS, Analyse fonctionnelle. Théorie et applications, Masson, 1983. [MR: 697382] [Zbl: 0511.46001] [Google Scholar]
  5. [B2] H. BRÉZIS, Problèmes unilatéraux. J. Math. Pures Appl. 51 (1972), 1-168. [MR: 428137] [Zbl: 0237.35001] [Google Scholar]
  6. [C] M. CHIPOT, Variationnal Inequalities and flow in Porous Media, Springer Verlag, New York, 1984. [MR: 747637] [Zbl: 0544.76095] [Google Scholar]
  7. [CM] M. CHIPOT & G. MICHAILLE, Uniqueness results and monotonicity properties for strongly nonlinear variational inequalities, Ann. Scuola Norm. Sup. Pisa (1989). [Zbl: 0699.35113] [Google Scholar]
  8. [CR] M. CHIPOT & J. F. RODRIGUES (to appear). [Google Scholar]
  9. [E] J. G. EIESLEY, Nonlinear vibrations of beams and rectangular plates, Z. Angew. Math. Phys. 15 (1964), 167-175. [MR: 175375] [Zbl: 0133.19101] [Google Scholar]
  10. [GT] D. GILBARG & N. S. TRUDINGER, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1983. [MR: 737190] [Zbl: 0562.35001] [Google Scholar]
  11. [GM] M. GURTIN & R. C. MCCAMY, On the diffusion of biological populations, Math. Biosc. (1977), 199-211. [Zbl: 0362.92007] [Google Scholar]
  12. [JM] J. L. JOLY & U. MOSCO, A propos de la régularité des solutions de certaines inéquations quasi-variationnelles, J. Funct. Anal. 34 (1979), 107-137. [MR: 551113] [Zbl: 0425.49018] [Google Scholar]
  13. [KS] D. KINDERLEHRER & G. STAMPACCHIA, An Introduction to Variational Inequalities and their Applications, Academic Press, 1980. [MR: 567696] [Zbl: 0457.35001] [Google Scholar]
  14. [Me] L. A. MEDEIROS, On a new class of nonlinear wave equations, J. Math. Anal. Appl., 69 (1979), 252-262. [MR: 535295] [Zbl: 0407.35051] [Google Scholar]
  15. [M] U. MOSCO, Implicit variational problems and quasi-variational inequalities. In « Nonlinear Operators and the Calculus of Variation », Lecture Notes in Math. n° 543, Springer Verlag (1976), 83-156. [MR: 513202] [Zbl: 0346.49003] [Google Scholar]
  16. [LL] J. LERAY & J. L. LIONS, Quelques résultats de Visik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 93 (1965), 97-107. [EuDML: 87074] [MR: 194733] [Zbl: 0132.10502] [Google Scholar]
  17. [L] J. L. LIONS, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod-Gauthier-Villars, Paris, 1969. [MR: 259693] [Zbl: 0189.40603] [Google Scholar]
  18. [N] J. NECAS, Introduction to the Theory of Nonlinear Elliptic Equations, John Wiley Interscience, New York, 1986. [MR: 874752] [Zbl: 0643.35001] [Google Scholar]
  19. [R] J. F. RODRIGUES, Obstacle Problems in Mathematical Physics. North Holland, Amsterdam, 1987. [MR: 880369] [Zbl: 0606.73017] [Google Scholar]
  20. [Y] N. YOSIDA, On the zeros of solutions of beam equations. Ann. Mat. Pura Appl. 151 (1988), 389-398. [MR: 964521] [Zbl: 0683.73031] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you