Free Access
Volume 26, Number 4, 1992
Page(s) 469 - 491
Published online 31 January 2017
  1. P. J ROACHE, Computational Fluid Dynamics, 2nd edition, Hermosa Publishers, Albuquerque, 1976. [Zbl: 0251.76002] [MR: 411358] [Google Scholar]
  2. T. ATUSI, The existence and uniqueness of the solution of equations describing compressible viscous fluid flow in a domain, Proc. Japan Acad., 52 (1976), 334-337. [MR: 421321] [Zbl: 0364.35039] [Google Scholar]
  3. B.-Y. GUO, Difference Methods for Partial Differential Equation, Science Press, Beijing, 1988. [Google Scholar]
  4. P.-Y KUO, Résolution numérique de fluide compressible, C.R. Acad. Sci. Paris, 291A (1980), 167-171. [MR: 605008] [Zbl: 0446.76062] [Google Scholar]
  5. B.-Y. GUO, Strict error estimation of numerical solution of compressible flow in two-dimensional space, Sciential Sinica, 26A (1983), 482-498. [MR: 724921] [Zbl: 0517.76075] [Google Scholar]
  6. T. J. CHUNG, Finite Element Analysis in Fluid Dynamics, McGraw-Hill International Book Company, 1978. [MR: 497683] [Zbl: 0432.76003] [Google Scholar]
  7. B.-Y. GUO, H.-P. MA, Strict error estimation for a spectral method of compressible fluid flow, CalColo, 24 (1987), 263-282. [MR: 1004522] [Zbl: 0668.76072] [Google Scholar]
  8. C. CANUTO Y. MADAY, A. QUARTERONI, Analysis of the combined finite element and Fourier interpolation, Numer. Math., 39 (1982), 205-220. [EuDML: 132791] [MR: 669316] [Zbl: 0496.42002] [Google Scholar]
  9. C. CANUTO, Y. MADAY, A. QUARTERONI, Combined finite element and spectral approximation of the Navier-Stokes equations, Numer. Math., 44 (1984), 201-217. [EuDML: 132929] [MR: 753953] [Zbl: 0614.76021] [Google Scholar]
  10. B.-Y. GUO, Spectral-difference method for solving two-dimensional vorticity equations, J. Comput. Math., 6 (1988), 238-257. [MR: 967884] [Zbl: 0668.76022] [Google Scholar]
  11. B.-Y. GUO, W.-M. CAO, Spectral-finite element method for solving two dimensional vorticity equations, Acta Math, Appl. Sinica, 7 (1991), 257-271. [MR: 1132064] [Zbl: 0734.76052] [Google Scholar]
  12. W.-M CAO, B.-Y. GUO, Spectral-finite element method for solving three- dimensioanl vorticity equations, Bulletin, 32 (1991), 83-108. [MR: 1166470] [Zbl: 0797.76041] [Google Scholar]
  13. B.-Y. GUO, W.-M. CAO, Spectral-finite element method for solving two-dimensional Navier-Stokes equations, accepted by J. Comp. Phys. [Zbl: 0900.76443] [Google Scholar]
  14. R. A. ADAMS, Sobolev Spaces, Academic Press, New York, 1975. [MR: 450957] [Zbl: 0314.46030] [Google Scholar]
  15. P. GRISVARD, Equations différentielles abstraites, Ann. Sci. École Norm. Sup., 4 (1969), 311-395. [EuDML: 81847] [MR: 270209] [Zbl: 0193.43502] [Google Scholar]
  16. P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  17. A. SCHATZ, V. THOMÉE, L. B. WAHLBIN, Maximum norm stability and error estimates in parabolic finite element equations, Commun. Pure Appl. Math., 33 (1980), 265-304. [MR: 562737] [Zbl: 0414.65066] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you