Free Access
Issue
ESAIM: M2AN
Volume 26, Number 4, 1992
Page(s) 469 - 491
DOI https://doi.org/10.1051/m2an/1992260404691
Published online 31 January 2017
  1. P. J ROACHE, Computational Fluid Dynamics, 2nd edition, Hermosa Publishers, Albuquerque, 1976. [Zbl: 0251.76002] [MR: 411358]
  2. T. ATUSI, The existence and uniqueness of the solution of equations describing compressible viscous fluid flow in a domain, Proc. Japan Acad., 52 (1976), 334-337. [MR: 421321] [Zbl: 0364.35039]
  3. B.-Y. GUO, Difference Methods for Partial Differential Equation, Science Press, Beijing, 1988.
  4. P.-Y KUO, Résolution numérique de fluide compressible, C.R. Acad. Sci. Paris, 291A (1980), 167-171. [MR: 605008] [Zbl: 0446.76062]
  5. B.-Y. GUO, Strict error estimation of numerical solution of compressible flow in two-dimensional space, Sciential Sinica, 26A (1983), 482-498. [MR: 724921] [Zbl: 0517.76075]
  6. T. J. CHUNG, Finite Element Analysis in Fluid Dynamics, McGraw-Hill International Book Company, 1978. [MR: 497683] [Zbl: 0432.76003]
  7. B.-Y. GUO, H.-P. MA, Strict error estimation for a spectral method of compressible fluid flow, CalColo, 24 (1987), 263-282. [MR: 1004522] [Zbl: 0668.76072]
  8. C. CANUTO Y. MADAY, A. QUARTERONI, Analysis of the combined finite element and Fourier interpolation, Numer. Math., 39 (1982), 205-220. [EuDML: 132791] [MR: 669316] [Zbl: 0496.42002]
  9. C. CANUTO, Y. MADAY, A. QUARTERONI, Combined finite element and spectral approximation of the Navier-Stokes equations, Numer. Math., 44 (1984), 201-217. [EuDML: 132929] [MR: 753953] [Zbl: 0614.76021]
  10. B.-Y. GUO, Spectral-difference method for solving two-dimensional vorticity equations, J. Comput. Math., 6 (1988), 238-257. [MR: 967884] [Zbl: 0668.76022]
  11. B.-Y. GUO, W.-M. CAO, Spectral-finite element method for solving two dimensional vorticity equations, Acta Math, Appl. Sinica, 7 (1991), 257-271. [MR: 1132064] [Zbl: 0734.76052]
  12. W.-M CAO, B.-Y. GUO, Spectral-finite element method for solving three- dimensioanl vorticity equations, Bulletin, 32 (1991), 83-108. [MR: 1166470] [Zbl: 0797.76041]
  13. B.-Y. GUO, W.-M. CAO, Spectral-finite element method for solving two-dimensional Navier-Stokes equations, accepted by J. Comp. Phys. [Zbl: 0900.76443]
  14. R. A. ADAMS, Sobolev Spaces, Academic Press, New York, 1975. [MR: 450957] [Zbl: 0314.46030]
  15. P. GRISVARD, Equations différentielles abstraites, Ann. Sci. École Norm. Sup., 4 (1969), 311-395. [EuDML: 81847] [MR: 270209] [Zbl: 0193.43502]
  16. P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. [MR: 520174] [Zbl: 0383.65058]
  17. A. SCHATZ, V. THOMÉE, L. B. WAHLBIN, Maximum norm stability and error estimates in parabolic finite element equations, Commun. Pure Appl. Math., 33 (1980), 265-304. [MR: 562737] [Zbl: 0414.65066]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you