Free Access
Issue
ESAIM: M2AN
Volume 26, Number 5, 1992
Page(s) 557 - 574
DOI https://doi.org/10.1051/m2an/1992260505571
Published online 31 January 2017
  1. D. N. ARNOLD & R. S. FALK, A uniformly accurate finite element method for the Mindlin-Reissner plate, SIAM J. Numer. Anal. 26, 1276-1290 (1989). [MR: 1025088] [Zbl: 0696.73040] [Google Scholar]
  2. K. J. BATHE & F. BREZZI, On the convergence of a four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation. In Proceeding Conf. on Mathematics of Finite Elements and Applications 5 (J. R. Whiteman, ed.), Academic Press 1985, pp. 491-503. [MR: 811058] [Zbl: 0589.73068] [Google Scholar]
  3. K. J. BATHE, F. BREZZI & S. W. CHO, The MITC7 and MITC9 plate bending elements, J. Computers & Structures 32, 797-814 (1989). [Zbl: 0705.73241] [Google Scholar]
  4. K. J. BATHE & E. N. DVORKIN, A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation, Int. J. Num. Meth. Eng. 21, 367-383 (1985). [Zbl: 0551.73072] [Google Scholar]
  5. F. BREZZI, K. J. BATHE & M. FORTIN, Mixed-interpolated elements for Reissner-Mindlin plates, Int J. Num. Meth. Eng. 28, 1787-1801 (1989). [MR: 1008138] [Zbl: 0705.73238] [Google Scholar]
  6. F. BREZZI, J. Jr. DOUGLAS, M FORTIN & L. D. MARINI, Efficient rectangular mixed finite elements in two and three space variables. RAIRO Model. Math. Anal. Numér. 21, 581-604 (1987). [EuDML: 193515] [MR: 921828] [Zbl: 0689.65065] [Google Scholar]
  7. F. BREZZI, J. Jr. DOUGLAS, &L. D. MARINI, Two families of mixed finite elements for second order elliptic problems, Numer. Math. 47, 217-235 (1985). [EuDML: 133032] [MR: 799685] [Zbl: 0599.65072] [Google Scholar]
  8. F. BREZZI & M. FORTIN, Numerical approximation of Mindlin-Reissner plates, Math. Comp. 47, 151-158 (1986). [MR: 842127] [Zbl: 0596.73058] [Google Scholar]
  9. F. BREZZI & J. PITKÄRANTA, On the stabilization of finite element approximations of the Stokes equations. In « Efficient Solutions of Elliptic Systems » (W. Hackbusch, ed.), Vieweg, Braunschweig 1984, 11-19. [MR: 804083] [Zbl: 0552.76002] [Google Scholar]
  10. P. G. CIARLET, The Finite Element Method for Elliptic Problems. North Holland 1978. [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  11. J. Jr. DOUGLAS & J. E. ROBERTS, Global estimates for mixed methods for second order elliptic equations, Math. Comp. 44, 39-52 (1985). [MR: 771029] [Zbl: 0624.65109] [Google Scholar]
  12. L. P. FRANCA & R. STENBERG, A modification of a low order Reissner-Mindlin plate bending element. Rapport de Recherche No 1084 INRIA-Rocquencourt, France, 1989. [Google Scholar]
  13. V. GIRAULT & P. A. RAVIART, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Berlin, 1986. [MR: 851383] [Zbl: 0585.65077] [Google Scholar]
  14. Z. HUANG, A multi-grid algorithm for mixed problems with penalty, Math. 57, 227-247 (1990). [EuDML: 133446] [MR: 1057122] [Zbl: 0712.73106] [Google Scholar]
  15. P. A. RAVIART & J. M. THOMAS, A mixed finite element method for second order elliptic problems In « Mathematical Aspects of Finite Element Methods » (I. Galligani and E. Magenes, eds.), pp 292-315, Springer Verlag 1977. [MR: 483555] [Zbl: 0362.65089] [Google Scholar]
  16. L. R. SCOTT & M. VOGELIUS, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO Model. Math. Anal. Numér. 19, 111-143 (1985). [EuDML: 193439] [MR: 813691] [Zbl: 0608.65013] [Google Scholar]
  17. F. BREZZI & M. FORTIN, Mixed and Hybrid Finite Elements, Springer Verlag 1991. [Zbl: 0788.73002] [MR: 1115205] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you