Free Access
Issue
ESAIM: M2AN
Volume 26, Number 5, 1992
Page(s) 627 - 656
DOI https://doi.org/10.1051/m2an/1992260506271
Published online 31 January 2017
  1. D. G. ARONSON and L. A PELETIER, 1981, Large time behaviour of solutions of the porous medium equation in bounded domains J. Differ. Eq, 39, 378-412. [Zbl: 0475.35059] [Google Scholar]
  2. J. W. BARRETT and C. M. ELLIOTT, 1989, Finite element approximation of a plasma equilibrium problem IMA J. Numer Anal., 9, 443-464. [Zbl: 0681.76114] [Google Scholar]
  3. J. W BARRETT and C M. ELLIOTT, 1991, Finite element approximation of a free boundary problem arising in the theory of liquid drops and plasma physics R.A.I.R.O. M2.A N., 25, 213-252. [EuDML: 193626] [Zbl: 0709.76086] [Google Scholar]
  4. J. W. BARRETT and R. M. SHANAHAN, 1991, Finite element approximation of a model reaction-diffusion equation with a non-Lipschitz nonlinearity. Numer. Math., 59, 217-242. [EuDML: 133546] [Zbl: 0735.65078] [Google Scholar]
  5. G. CALOZ, 1991, Approximation by finite element method of the model plasma problem R.A.I.R.O. M2.A.N., 25, 49-66. [EuDML: 193621] [Zbl: 0712.76069] [Google Scholar]
  6. P. G. CIARLET and P. A. RAVIART, 1973, Maximum principle and uniform convergence for the finite element method. Comp. Meth. Appl. Mech Engrg., 2, 17-31. [Zbl: 0251.65069] [Google Scholar]
  7. F. CONRAD and P. CORTEY-DUMONT, 1987a, b, Nonlinear eigenvalue problems in elliptic variational inequalities : some results for the maximal branch. Part 1 : Approximation of solutions. Part 2 : Estimates for the free boundaries and « stability » results. Numer. Funct. Anal. Optim., 9 and 10, 1059-1090, 1091-1114. [Zbl: 0647.49004] [Google Scholar]
  8. M. CROUZEIX and J. RAPPAZ, 1990, On Numerical Approximation in Bifurcation Theory. Springer-Verlag, Berlin. [Zbl: 0687.65057] [Google Scholar]
  9. A. EYDELAND and B. TURKINGTON, 1988, A computational method of solving free-boundary problems in vortex dynamics. J. Comput. Phys., 78, 194-214. [Zbl: 0645.76025] [Google Scholar]
  10. A. FRIEDMAN, 1969, Partial Differential Equations. Holt, Reinhart & Winston. New York. [Zbl: 0224.35002] [Google Scholar]
  11. D. GILBARG and N. S. TRUDINGER, 1983, Elliptic Partial Differential Equations of Second Order. 2nd Edition. Springer, Berlin, Heidelberg. [Zbl: 0361.35003] [Google Scholar]
  12. V. GIRAULT and P. A. RAVIART, 1982, An analysis of upwind schemes for the Navier-Stokes equations. SIAM J. Numer. Anal., 19, 312-333. [Zbl: 0487.76036] [Google Scholar]
  13. R. H. NOCHETTO, 1988, Sharp L∞-error estimates for semilinear elliptic problems with free boundaries. Numer. Math., 54, 243-255. [EuDML: 133316] [MR: 971701] [Zbl: 0663.65125] [Google Scholar]
  14. G. STRANG and G. FIX, 1973, An Analysis of the Finite Element Method. Prentice-Hall, New Jersey. [MR: 443377] [Zbl: 0356.65096] [Google Scholar]
  15. L. B. WAHLBIN, 1990, Local behaviour in finite element methods, in : Handbook of Numerical Analysis Vol. 2 (P. G. Ciarlet and J. L. Lions, Eds. ). North Holland, Amsterdam. [MR: 1115238] [Zbl: 0875.65089] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you