Free Access
Issue
ESAIM: M2AN
Volume 26, Number 6, 1992
Page(s) 673 - 708
DOI https://doi.org/10.1051/m2an/1992260606731
Published online 31 January 2017
  1. A. J. CHORIN, Numerical solution of Navier-Stokes equations Math. Comp., 22 (1968), 745-762. [MR: 242392] [Zbl: 0198.50103] [Google Scholar]
  2. [2]C. CUVELIER, A. SEGAL, A. A. VAN STEENHOVEN, Finite element methods and Navier-Stokes equations, D. Reidel Publishing Company, 1986. [MR: 850259] [Zbl: 0649.65059] [Google Scholar]
  3. J. DOUGLAS and H. RACHFORD, On the numencal solution of the heat conduction problem in two and three space variables, Trans. Amer. Math. Soc., 82 2 (1956), 421-439. [MR: 84194] [Zbl: 0070.35401] [Google Scholar]
  4. G. GiRAULT and P.-A. RAVIART, Finite element methods for Navier-Stokes equations, Theory and algorithms, Springer-Verlag, Berlin, 1986. [MR: 540128] [Zbl: 0585.65077] [Google Scholar]
  5. A. R. GOURLAY, Splitting-up methods for time dependent partial differential equations, in The state of the art in numerical analysis (proc. Conf. Univ. York, Heslington, 1976), Academic Press, London, 1977, pp. 757-796. [MR: 451759] [Google Scholar]
  6. J. G. HEYWOOD and R. RANNACHER, Finite element approximation of the nonstationary Navier Stokes problem : I. Regularity of the solution and second-order error estimates for the spatial discretization, SIAM J. Numer. Anal., 19 (1982), 275-311. [MR: 650052] [Zbl: 0487.76035] [Google Scholar]
  7. M. KŘIŽEK and P. NEITTAANMÄKI, Finite element approximation to variational problems with applications, Pitman Monographs in Pure and Applied Mathematics 50, Longman, 1990. [MR: 1066462] [Zbl: 0708.65106] [Google Scholar]
  8. O. A. LADYZHENSKAYA, The mathematical theory of viscous incompressible flow, Gordon and Breach, New York, Second Edition, 1969. [MR: 254401] [Zbl: 0184.52603] [Google Scholar]
  9. O. A. LADYZHENSKAYA and V. I. RIVKIND, On the alternating method for the computation of a viscous incompressible fluid flow in cylindrical coordinates, Izv. Akad. Nauk, 35 (1971), 251-268. [Zbl: 0222.76024] [Google Scholar]
  10. J. L. LIONS and R. TEMAM, Éclatement et décentralisation en calcul des variations, in « Proc. of Symposium on Optimization », Lecture Notes in Mathematics, Vol. 132, Springer Verlag, 1970, pp. 196-217. [MR: 467468] [Zbl: 0223.49033] [Google Scholar]
  11. T. LU, P. NEITTAANMÄKI and X.-C. TAI, A parallel spliting-up method and its application to Naver-Stokes equations, Appl. Math. Lett., 4 (1989). 25-29. [MR: 1095644] [Zbl: 0718.65066] [Google Scholar]
  12. G. I. MARCHUK, Methods of numerical mathematics, Springer-Verlag, 1982. [MR: 661258] [Zbl: 0485.65003] [Google Scholar]
  13. D. W. PEACEMAN and H. H. RACHFORD, The numerical solution of parabolic and elliptic differential equations, SIAM, 3 (1955), 28-42. [MR: 71874] [Zbl: 0067.35801] [Google Scholar]
  14. J. SHEN, On error estimates of projection methods for Navier-Stokes equations : First order schemes, To appear in SIAM J. Numer. Anal. [MR: 1149084] [Zbl: 0741.76051] [Google Scholar]
  15. X. C. TAI and P. NEITTAANMÄKI, A parallel finite element splitting up method for parabolic problems, Numerical methods for partial differential equations, 7 (1991), 209-225. [MR: 1122113] [Zbl: 0747.65084] [Google Scholar]
  16. R. TEMAM Sur l'approximation de la solution des équations de Navier-Stokes par la méthode de pas fractionnaires (I), Arch. Rational Mech. Anal., 32 (1969), 135-153. [MR: 237973] [Zbl: 0195.46001] [Google Scholar]
  17. R. TEMAM, Numerical analysis, D. Reidel Publishing Company, Dordrecht, North-Holland, 1973. [MR: 347099] [Zbl: 0261.65001] [Google Scholar]
  18. R. TEMAM Navier-Stokes equations, North-Holland, 1977. [MR: 609732] [Zbl: 0383.35057] [Google Scholar]
  19. N. N. YANENKO, The method of fractional steps for solving multi-dimensional problems of mathematical physics, Novosibirsk, Nauka, 1967. [Zbl: 0209.47103] [Google Scholar]
  20. L. YING, Viscosity splitting method for three dimensional Navier-Stokes equations, Acta Math. Sinica New Series, No. 3, 4 (1988), 210-226. [MR: 965569] [Zbl: 0673.35085] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you