Free Access
Volume 26, Number 7, 1992
Page(s) 793 - 834
Published online 31 January 2017
  1. R. BANK, A multilevel iterative method for nonlinear elliptic equations, Elliptic Problem Solvers, M. Schultz, Ed., p. 1, Academic Press, New York, 1981. [Zbl: 0467.65054] [Google Scholar]
  2. G. BATTLE, A block spin construction of ondelettes, Comm. Math. Phys., 110, p. 601, 1987. [MR: 895218] [Google Scholar]
  3. M. BERGER and P. COLELLA, Local adaptive mesh refinement for shock hydrodynamics, J. Comp. Phys., 82 pp. 64-84, 1989. [Zbl: 0665.76070] [Google Scholar]
  4. M. BERGER and J. OLIGER, Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations, J. Comp. Phys., 53, No. 3, pp. 484-512, 1984. [MR: 739112] [Zbl: 0536.65071] [Google Scholar]
  5. G. BEYLKIN, On the representation of operators in bases of compactly supported wavelets, Proceedings of the École sur des Problèmes non Linéaires Appliqués, INRIA, Paris, June 1991. [MR: 1191143] [Zbl: 0766.65007] [Google Scholar]
  6. G. BEYLKIN, R. COFIMAN and V. ROKHLIN, Fast wavelet transform and numerical algorithms, Yale University Tech. Report YALE/DCS/RR-696, August 1989. [Google Scholar]
  7. A. BRANDT, Math. Comp., 31, p. 333, 1977, New York, 1981. [MR: 431719] [Zbl: 0373.65054] [Google Scholar]
  8. I. DAUBECHIES, Orthonormal bases of compactly supported wavelets, Comm. in Pure Apll. Math., 41, pp. 909-996, November 1988. [MR: 951745] [Zbl: 0644.42026] [Google Scholar]
  9. B. LE MESURIER, G. PAPANICOLAOU, G. SULEM and P. SULEM, Local structure of the self focusing singularity of the nonlinear Schroedinger equation, Physica D, 32, pp. 210-226, 1988. [MR: 969030] [Zbl: 0694.35206] [Google Scholar]
  10. P. G. LEMARIE, Ondelettes à localisation exponentielles, J. Math. Pures Appl., 1988. [MR: 964171] [Zbl: 0758.42020] [Google Scholar]
  11. J. LIANDRAT and Ph. TCHAMITCHIAN, Resolution of the 1D regularized Burgers equation using a spatial wavelet approximation, NASA Report, ICASE Report No. 90-83, Dec. 1990. [Zbl: 0917.65117] [Google Scholar]
  12. S. MALLAT, Multiresolution approximation and wavelet orthonormal bases of L2, Trans. Amer. Math. Soc. 315, pp. 69-87, Sept. 1989. [MR: 1008470] [Zbl: 0686.42018] [Google Scholar]
  13. S. MALLAT, A theory for multiresolution signal decomposition : the wavelet representation, IEEE Trans. Pattern Anal. Machine Intell., 11, No. 7, pp. 674-693, July 1989. [Zbl: 0709.94650] [Google Scholar]
  14. Y. MEYER, Ondelettes et opérateurs, Hermann, Paris 1990. [MR: 1085487] [Zbl: 0694.41037] [Google Scholar]
  15. Y. MEYER, Ondelettes orthogonales sur un interval, preprint CEREMADE, Université Paris Dauphine, 1991. [MR: 1133374] [Google Scholar]
  16. J. STROMBERG, A modified Franklin system and higher-order Systems of Rn as unconditional bases for Hardy spaces, Conference in Harmonie Analysis in Honor of A. Zygmund, 2, pp 475-493, eds. W. Beckner et al., Wadsworth Math. Series. [Zbl: 0521.46011] [Google Scholar]
  17. J.-C. XU andW.-C. SHANN, Galerkin-wavelets Methods for Two-point Boundary Value Problems, preprint, May 1991. [Zbl: 0771.65050] [Google Scholar]
  18. H. YSERENTANT, On the multi-level splittmg of finite element spaces, Numer. Math., 49, pp. 379-412, 1986. [EuDML: 133143] [Zbl: 0608.65065] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you