Free Access
Volume 26, Number 7, 1992
Page(s) 793 - 834
Published online 31 January 2017
  1. R. BANK, A multilevel iterative method for nonlinear elliptic equations, Elliptic Problem Solvers, M. Schultz, Ed., p. 1, Academic Press, New York, 1981. [Zbl: 0467.65054]
  2. G. BATTLE, A block spin construction of ondelettes, Comm. Math. Phys., 110, p. 601, 1987. [MR: 895218]
  3. M. BERGER and P. COLELLA, Local adaptive mesh refinement for shock hydrodynamics, J. Comp. Phys., 82 pp. 64-84, 1989. [Zbl: 0665.76070]
  4. M. BERGER and J. OLIGER, Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations, J. Comp. Phys., 53, No. 3, pp. 484-512, 1984. [MR: 739112] [Zbl: 0536.65071]
  5. G. BEYLKIN, On the representation of operators in bases of compactly supported wavelets, Proceedings of the École sur des Problèmes non Linéaires Appliqués, INRIA, Paris, June 1991. [MR: 1191143] [Zbl: 0766.65007]
  6. G. BEYLKIN, R. COFIMAN and V. ROKHLIN, Fast wavelet transform and numerical algorithms, Yale University Tech. Report YALE/DCS/RR-696, August 1989.
  7. A. BRANDT, Math. Comp., 31, p. 333, 1977, New York, 1981. [MR: 431719] [Zbl: 0373.65054]
  8. I. DAUBECHIES, Orthonormal bases of compactly supported wavelets, Comm. in Pure Apll. Math., 41, pp. 909-996, November 1988. [MR: 951745] [Zbl: 0644.42026]
  9. B. LE MESURIER, G. PAPANICOLAOU, G. SULEM and P. SULEM, Local structure of the self focusing singularity of the nonlinear Schroedinger equation, Physica D, 32, pp. 210-226, 1988. [MR: 969030] [Zbl: 0694.35206]
  10. P. G. LEMARIE, Ondelettes à localisation exponentielles, J. Math. Pures Appl., 1988. [MR: 964171] [Zbl: 0758.42020]
  11. J. LIANDRAT and Ph. TCHAMITCHIAN, Resolution of the 1D regularized Burgers equation using a spatial wavelet approximation, NASA Report, ICASE Report No. 90-83, Dec. 1990. [Zbl: 0917.65117]
  12. S. MALLAT, Multiresolution approximation and wavelet orthonormal bases of L2, Trans. Amer. Math. Soc. 315, pp. 69-87, Sept. 1989. [MR: 1008470] [Zbl: 0686.42018]
  13. S. MALLAT, A theory for multiresolution signal decomposition : the wavelet representation, IEEE Trans. Pattern Anal. Machine Intell., 11, No. 7, pp. 674-693, July 1989. [Zbl: 0709.94650]
  14. Y. MEYER, Ondelettes et opérateurs, Hermann, Paris 1990. [MR: 1085487] [Zbl: 0694.41037]
  15. Y. MEYER, Ondelettes orthogonales sur un interval, preprint CEREMADE, Université Paris Dauphine, 1991. [MR: 1133374]
  16. J. STROMBERG, A modified Franklin system and higher-order Systems of Rn as unconditional bases for Hardy spaces, Conference in Harmonie Analysis in Honor of A. Zygmund, 2, pp 475-493, eds. W. Beckner et al., Wadsworth Math. Series. [Zbl: 0521.46011]
  17. J.-C. XU andW.-C. SHANN, Galerkin-wavelets Methods for Two-point Boundary Value Problems, preprint, May 1991. [Zbl: 0771.65050]
  18. H. YSERENTANT, On the multi-level splittmg of finite element spaces, Numer. Math., 49, pp. 379-412, 1986. [EuDML: 133143] [Zbl: 0608.65065]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you