Free Access
Volume 27, Number 1, 1993
Page(s) 107 - 127
Published online 31 January 2017
  1. R. A. ADAMS, Sobolev Spaces, Academic Press N. Y., 1968. [MR: 450957] [Zbl: 1098.46001] [Google Scholar]
  2. R. B. BlRD, R. C. ARMSTRONG and O. HASSAGER, Dynamics of polymeric liquids, Vol 1, Fluid Mechanics, Second Edition, John Wiley & Sons, N. Y., 1987. [Google Scholar]
  3. J. BARANGER and D. SANDRI, Approximation par element finis d'écoulements de fluides viscoélastiques Existence de solutions approchées et majorations d'erreur I Contraintes continues, C. R. Acad. Sci. Paris, Tome 312, Série I (1991), 541-544. [MR: 1099689] [Zbl: 0718.76010] [Google Scholar]
  4. M. BERCOVIER and O. PIRONNEAU, Error estimates for the finite element method solution of the Stokes problem in the primitive variables, Numer. Math., 33 (1979), 211-224. [EuDML: 132638] [MR: 549450] [Zbl: 0423.65058] [Google Scholar]
  5. J. H. CARNEIRO DE ARAÚJO, Métodos de Elementos Finitos Otimizados para o Sistema de Stokes Associado a Problemas de Viscoelasticidade, Doctoral dissertation, Pontificia Universidade Católica do Rio de Janeiro, 1991. [Google Scholar]
  6. M. S. ENGELMAN, R. L. SANI, P. M. GRESHO and M. BERCOVIER, Consistent vs. reduced integration penalty methods for incompressible media using several old and new elements, Int. J. Num. Methods in Fluids, 2 (1982), 25-42. [MR: 643172] [Zbl: 0483.76013] [Google Scholar]
  7. M. FORTIN and A. FORTIN, A new approach for the FEM simulation of viscoelastic flows, J. Non-Newtonian Fluid Mech., 32 (1989) 295-310. [Zbl: 0672.76010] [Google Scholar]
  8. M. FORTIN and R. PIERRE, On the convergence of the mixed method of Crochet and Marchal for viscoelastic flows, Comput. Methods Appl. Mech, Engrg, 73 (1989) 341-350. [MR: 1016647] [Zbl: 0692.76002] [Google Scholar]
  9. J. M. MARCHAL and M. CROCHET, A new mixed finite element for calculating viscoelastic flow, J. Non-Newtonian Fluid Mech., 26 (1987) 77-117. [Zbl: 0637.76009] [Google Scholar]
  10. V. RUAS, An optimal three-field finite element approximation of the Stokes system with continuous extra stresses (to appear). [MR: 1266524] [Zbl: 0797.76045] [Google Scholar]
  11. V. RUAS, A convergent three-field quadrilatéral finite element method for simulating viscoelastic flow on irregular meshes. Revue Européenne des Eléments Finis, Vol. 1, 4 (1992), 391-406. [MR: 1266524] [Zbl: 0924.76060] [Google Scholar]
  12. V. RUAS and J. H. CARNEIRO DE ARAÚJO, Un método mejorado de segundo orden para la simulación de flujo viscoelástico con elementos finitos quadrilaterales, Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, Vol. 8, 1 (1992), 77-85. [MR: 1160319] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you