Free Access
Issue
ESAIM: M2AN
Volume 27, Number 3, 1993
Page(s) 251 - 288
DOI https://doi.org/10.1051/m2an/1993270302511
Published online 31 January 2017
  1. [Ad] R. ADAMS, Sobolev spaces, Academic Press, 1975. [MR: 450957] [Zbl: 0314.46030] [Google Scholar]
  2. [Ag] S. AGMON, Lectures on elliptic boundary value problems, Van Nostrand, 1965. [MR: 178246] [Zbl: 0142.37401] [Google Scholar]
  3. [AS] M. ABRAMOWITZ, I. STEGUN, Handbook of mathematical fonctions, Dover Publications, 1968. [Google Scholar]
  4. [Ast 1] G. B. ASTRAKHANTSEV, Methods of fictitious domains for a second-order elliptic equation with natural boundary conditions, U.S.S.R. Comput. Math. and Math. Phys., vol. 18, n° 1, 1978, pp. 114-121. [Zbl: 0394.35028] [Google Scholar]
  5. [Ast 2] G. B. ASTRAKHANTSEV, Numerical solution of the Dirichlet problem using a discrete analogue of a double-layer potential, Soviet. J. Numer. Anal. Math. Modelling, 1, 1986, pp. 267-276. [MR: 897993] [Zbl: 0825.65075] [Google Scholar]
  6. [At] C. ATAMIAN, Résolution de problèmes de diffraction d'ondes acoustiques et électromagnétiques en régime fréquentiel par une méthode de domaines fictifs, Thèse de doctorat de l'université de Paris VI, 1991. [Google Scholar]
  7. [BDGG] B. BUZBEE, F. DORR, J. GEORGE, G. GOLUB, The direct solution of the discrete Poisson equation on irregular regions, SIAM J. Numer. Anal., vol. 8, n° 4, 1970, pp. 722-736. [MR: 292316] [Zbl: 0231.65083] [Google Scholar]
  8. [Ben] A. BENDALI, Approximation par éléments finis de surface de problèmes de diffraction des ondes électromagnétiques, Thèse de doctorat d'état, Université de Paris VI, 1984. [Google Scholar]
  9. [Ber] M. BERCOVIER, Perturbation of mixed variational problems. Application to mixed finite element methods, RAIRO Modél. Math. Anal. Numér., n° 12, 1978, pp. 211-236. [EuDML: 193320] [MR: 509973] [Zbl: 0428.65059] [Google Scholar]
  10. [Br] H. BREZIS, Analyse fonctionnelle. Théorie et applications, Masson, Paris 1983. [MR: 697382] [Zbl: 0511.46001] [Google Scholar]
  11. [BW] C. BÖRGERS, O. B. WIDLUND, Finite element capacitance matrix methods, Technical report 261, Computer Science Department, New York University, and LBL Report 22583, Lawrence Berkeley Laboratory, 1986. [Google Scholar]
  12. [Ce] J. CEA, Optimisation, Théorie et algorithmes, Dunod, Paris, 1971. [MR: 298892] [Zbl: 0211.17402] [Google Scholar]
  13. [Ci] P. G. CIARLET, Introduction à l'analyse numérique matricielle et à l'optimisation, Masson, Paris, 1982. [MR: 680778] [Zbl: 0488.65001] [Google Scholar]
  14. [DL] R. DAUTRAY, J. L. LIONS, Analyse mathématique et calcul numérique pour les sciences et techniques, Masson, Paris, 1984. [Zbl: 0642.35001] [Google Scholar]
  15. [DS] N. DUNFORD, J. T. SCHWARTZ, Linear operators, Interscience, 1958. [Zbl: 0084.10402] [Google Scholar]
  16. [Fa] P. FAURRE, Notes d'optimisation, Cours du CMAP, Ecole Polytechnique, Palaiseau, 1984. [Google Scholar]
  17. [FK] S. A. FINOGENOV, Y. A. KUZNETSOV, Two-stage fictitious component method for solving the Dirichlet boundary value problem, Sov. J. Num. Anal. Math. Modelling, 3, 1988, pp. 301-324. [MR: 953949] [Zbl: 0825.65080] [Google Scholar]
  18. [G] J. GIROIRE, Integral equations methods for exterior problems for the Helmholtz Integral equation, Rapport interne du CMAP, École polytechnique, n° 40, Palaiseau, 1978. [Google Scholar]
  19. [H] L. HÖRMANDER, The analysis of linear partial differential operators, Springer, 1983. [Zbl: 0521.35002] [Google Scholar]
  20. [Li] J. L. LIONS, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles, Dunod, Paris, 1968. [MR: 244606] [Zbl: 0179.41801] [Google Scholar]
  21. [LM] J. L. LIONS, E. MAGENES, Problèmes aux limites non homogènes et applications, Dunod, Paris, 1968. [Zbl: 0165.10801] [Google Scholar]
  22. [Lu] D. G. LUENBERGER, Optimization by vector space methods, Wiley, 1969. [MR: 238472] [Zbl: 0176.12701] [Google Scholar]
  23. [MKM] G. I. MARCHUK, Y. A. KUZNETSOV, A. M. MATSOKIN, Fictitious domain and domain decomposition methods, Sov. J. Num. Anal. Math. Modelling, 1, 1986, pp. 3-36. [MR: 897996] [Zbl: 0825.65027] [Google Scholar]
  24. [Nec] J. NEČAS, Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967. [MR: 227584] [Google Scholar]
  25. [Ned] J. C. NEDELEC, Approximation des équations intégrales en mécanique et en physique, Cours de l'école d'été d'analyse numérique, EDF-CEA-INRIA, 1977. [Google Scholar]
  26. [O] F. OLVER, Asymptotics and special functions, Academic Press, 1981. [Zbl: 0303.41035] [Google Scholar]
  27. [OW] D. P. O'LEARY, O. WIDLUND, Capacitance matrix methods for the Helmholtz equation on general three-dimensional regions, Math. Comp., vol. 33, n° 147, 1979, pp. 849-879. [MR: 528044] [Zbl: 0407.65047] [Google Scholar]
  28. [PW1] W. PROSKUROWSKI, O. WIDLUND, On the numerical solution of Helmholtz's equation by the capacitance matrix method, Math. Comp., vol. 30, n° 135, 1976, pp. 433-468. [MR: 421102] [Zbl: 0332.65057] [Google Scholar]
  29. [PW2] W. PROSKUROWSKI, O. WIDLUND, A finite element capacitance matrix method for the Neumann problem for the Laplace's equation, SIAM J, Sci. Comp., col. 1, n° 4, 1980, pp. 410-425. [MR: 610753] [Zbl: 0458.65087] [Google Scholar]
  30. [R] A. G. RAMM, Scattering by obstacles, Reidel Publishing Company, 1986. [MR: 847716] [Zbl: 0607.35006] [Google Scholar]
  31. [RT] J. E. ROBERTS, J. M. THOMAS, Mixed and hybrid methods, Handbook of numerical analysis, vol. II, Finite element methods (Part 1), North Holland, 1991. [MR: 1115239] [Zbl: 0875.65090] [Google Scholar]
  32. [RS] M. REED, B. SIMON, Methods of modern mathematical physics, Academic Press, 1981. [Zbl: 0459.46001] [Google Scholar]
  33. [Sc] L. SCHWARTZ, Théorie des distributions, Hermann, 1966. [MR: 209834] [Zbl: 0149.09501] [Google Scholar]
  34. [So] A. SOMMERFELD, Partial differential equations in physics, Academic Press, New York, 1964. [MR: 29463] [Zbl: 0034.35702] [Google Scholar]
  35. [TA] A. TYCHONOV, V. ARSENINE, Méthode de résolution de problèmes mal posés, Éditions Mir, Moscou, 1976. [MR: 455367] [Google Scholar]
  36. [W] C. H. WILCOX, Scattering theory for the d'Alembert equation in exterior domains, Lecture Notes in Maths., n° 442, Springer-Verlag, Berlin, 1975. [MR: 460927] [Zbl: 0299.35002] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you