Free Access
Issue
ESAIM: M2AN
Volume 27, Number 3, 1993
Page(s) 251 - 288
DOI https://doi.org/10.1051/m2an/1993270302511
Published online 31 January 2017
  1. [Ad] R. ADAMS, Sobolev spaces, Academic Press, 1975. [MR: 450957] [Zbl: 0314.46030]
  2. [Ag] S. AGMON, Lectures on elliptic boundary value problems, Van Nostrand, 1965. [MR: 178246] [Zbl: 0142.37401]
  3. [AS] M. ABRAMOWITZ, I. STEGUN, Handbook of mathematical fonctions, Dover Publications, 1968.
  4. [Ast 1] G. B. ASTRAKHANTSEV, Methods of fictitious domains for a second-order elliptic equation with natural boundary conditions, U.S.S.R. Comput. Math. and Math. Phys., vol. 18, n° 1, 1978, pp. 114-121. [Zbl: 0394.35028]
  5. [Ast 2] G. B. ASTRAKHANTSEV, Numerical solution of the Dirichlet problem using a discrete analogue of a double-layer potential, Soviet. J. Numer. Anal. Math. Modelling, 1, 1986, pp. 267-276. [MR: 897993] [Zbl: 0825.65075]
  6. [At] C. ATAMIAN, Résolution de problèmes de diffraction d'ondes acoustiques et électromagnétiques en régime fréquentiel par une méthode de domaines fictifs, Thèse de doctorat de l'université de Paris VI, 1991.
  7. [BDGG] B. BUZBEE, F. DORR, J. GEORGE, G. GOLUB, The direct solution of the discrete Poisson equation on irregular regions, SIAM J. Numer. Anal., vol. 8, n° 4, 1970, pp. 722-736. [MR: 292316] [Zbl: 0231.65083]
  8. [Ben] A. BENDALI, Approximation par éléments finis de surface de problèmes de diffraction des ondes électromagnétiques, Thèse de doctorat d'état, Université de Paris VI, 1984.
  9. [Ber] M. BERCOVIER, Perturbation of mixed variational problems. Application to mixed finite element methods, RAIRO Modél. Math. Anal. Numér., n° 12, 1978, pp. 211-236. [EuDML: 193320] [MR: 509973] [Zbl: 0428.65059]
  10. [Br] H. BREZIS, Analyse fonctionnelle. Théorie et applications, Masson, Paris 1983. [MR: 697382] [Zbl: 0511.46001]
  11. [BW] C. BÖRGERS, O. B. WIDLUND, Finite element capacitance matrix methods, Technical report 261, Computer Science Department, New York University, and LBL Report 22583, Lawrence Berkeley Laboratory, 1986.
  12. [Ce] J. CEA, Optimisation, Théorie et algorithmes, Dunod, Paris, 1971. [MR: 298892] [Zbl: 0211.17402]
  13. [Ci] P. G. CIARLET, Introduction à l'analyse numérique matricielle et à l'optimisation, Masson, Paris, 1982. [MR: 680778] [Zbl: 0488.65001]
  14. [DL] R. DAUTRAY, J. L. LIONS, Analyse mathématique et calcul numérique pour les sciences et techniques, Masson, Paris, 1984. [Zbl: 0642.35001]
  15. [DS] N. DUNFORD, J. T. SCHWARTZ, Linear operators, Interscience, 1958. [Zbl: 0084.10402]
  16. [Fa] P. FAURRE, Notes d'optimisation, Cours du CMAP, Ecole Polytechnique, Palaiseau, 1984.
  17. [FK] S. A. FINOGENOV, Y. A. KUZNETSOV, Two-stage fictitious component method for solving the Dirichlet boundary value problem, Sov. J. Num. Anal. Math. Modelling, 3, 1988, pp. 301-324. [MR: 953949] [Zbl: 0825.65080]
  18. [G] J. GIROIRE, Integral equations methods for exterior problems for the Helmholtz Integral equation, Rapport interne du CMAP, École polytechnique, n° 40, Palaiseau, 1978.
  19. [H] L. HÖRMANDER, The analysis of linear partial differential operators, Springer, 1983. [Zbl: 0521.35002]
  20. [Li] J. L. LIONS, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles, Dunod, Paris, 1968. [MR: 244606] [Zbl: 0179.41801]
  21. [LM] J. L. LIONS, E. MAGENES, Problèmes aux limites non homogènes et applications, Dunod, Paris, 1968. [Zbl: 0165.10801]
  22. [Lu] D. G. LUENBERGER, Optimization by vector space methods, Wiley, 1969. [MR: 238472] [Zbl: 0176.12701]
  23. [MKM] G. I. MARCHUK, Y. A. KUZNETSOV, A. M. MATSOKIN, Fictitious domain and domain decomposition methods, Sov. J. Num. Anal. Math. Modelling, 1, 1986, pp. 3-36. [MR: 897996] [Zbl: 0825.65027]
  24. [Nec] J. NEČAS, Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967. [MR: 227584]
  25. [Ned] J. C. NEDELEC, Approximation des équations intégrales en mécanique et en physique, Cours de l'école d'été d'analyse numérique, EDF-CEA-INRIA, 1977.
  26. [O] F. OLVER, Asymptotics and special functions, Academic Press, 1981. [Zbl: 0303.41035]
  27. [OW] D. P. O'LEARY, O. WIDLUND, Capacitance matrix methods for the Helmholtz equation on general three-dimensional regions, Math. Comp., vol. 33, n° 147, 1979, pp. 849-879. [MR: 528044] [Zbl: 0407.65047]
  28. [PW1] W. PROSKUROWSKI, O. WIDLUND, On the numerical solution of Helmholtz's equation by the capacitance matrix method, Math. Comp., vol. 30, n° 135, 1976, pp. 433-468. [MR: 421102] [Zbl: 0332.65057]
  29. [PW2] W. PROSKUROWSKI, O. WIDLUND, A finite element capacitance matrix method for the Neumann problem for the Laplace's equation, SIAM J, Sci. Comp., col. 1, n° 4, 1980, pp. 410-425. [MR: 610753] [Zbl: 0458.65087]
  30. [R] A. G. RAMM, Scattering by obstacles, Reidel Publishing Company, 1986. [MR: 847716] [Zbl: 0607.35006]
  31. [RT] J. E. ROBERTS, J. M. THOMAS, Mixed and hybrid methods, Handbook of numerical analysis, vol. II, Finite element methods (Part 1), North Holland, 1991. [MR: 1115239] [Zbl: 0875.65090]
  32. [RS] M. REED, B. SIMON, Methods of modern mathematical physics, Academic Press, 1981. [Zbl: 0459.46001]
  33. [Sc] L. SCHWARTZ, Théorie des distributions, Hermann, 1966. [MR: 209834] [Zbl: 0149.09501]
  34. [So] A. SOMMERFELD, Partial differential equations in physics, Academic Press, New York, 1964. [MR: 29463] [Zbl: 0034.35702]
  35. [TA] A. TYCHONOV, V. ARSENINE, Méthode de résolution de problèmes mal posés, Éditions Mir, Moscou, 1976. [MR: 455367]
  36. [W] C. H. WILCOX, Scattering theory for the d'Alembert equation in exterior domains, Lecture Notes in Maths., n° 442, Springer-Verlag, Berlin, 1975. [MR: 460927] [Zbl: 0299.35002]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you