Free Access
Issue
ESAIM: M2AN
Volume 27, Number 3, 1993
Page(s) 375 - 392
DOI https://doi.org/10.1051/m2an/1993270303751
Published online 31 January 2017
  1. H. ATTOUCH, Variational convergence for functions and operators, Pitman, 1984. [MR: 773850] [Zbl: 0561.49012] [Google Scholar]
  2. D. P. BERTSEKAS and J. N. TSITSIKLIS, Parallel and Distributed Computation, Prentice-Hall Int., 1989. [Zbl: 0743.65107] [Google Scholar]
  3. M. A. BOUGHAZI, Contribution à l'étude des algorithmes d'optimisation en Analyse des Données, Thèse de Doctorat, Université de Grenoble, 1987. [Google Scholar]
  4. H. BREZIS, Opérateurs maximaux monotones, Mathematics Studies 5, North Holland, 1973. [Google Scholar]
  5. H. BREZIS and P. L. LIONS, Produits infinis de résolvantes, Israel J. of Math.29, 4, 1978, pp. 329-345. [MR: 491922] [Zbl: 0387.47038] [Google Scholar]
  6. F. BROWDER and W. PETRYSHIN, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. of Math. Anal and Appl. 20, 1967, pp. 197-228. [MR: 217658] [Zbl: 0153.45701] [Google Scholar]
  7. J. LEMORDANT and T. PHAM DINH, Algorithme proximal pour la résolution numérique d'équations d'évolution en vison de bas niveau, preprint. [Google Scholar]
  8. P. L. LIONS, Une méthode itérative de résolution d'une inéquation variationnelle, Israel J. of Math. 31, 2, 1978, pp. 204-208. [MR: 516257] [Zbl: 0395.49013] [Google Scholar]
  9. P. L. LIONS and B. MERCIER, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal. 16, 6, 1979, pp. 964-979. [MR: 551319] [Zbl: 0426.65050] [Google Scholar]
  10. P. MAHEY, H. VAN NGUYEN and D. T. PHAM, Proximal methods and decomposition of large convex programs, ARTEMIS RR877, 1992. [Google Scholar]
  11. B. MARTINET, Algorithmes pour la résolution de problèmes d'optimisation et de minimax, Thèse d'État, Univ. de Grenoble, 1972. [Google Scholar]
  12. C. MICHELOT, Problème de localisation : propriétés géométriques etrésolution par des méthodes d'optimisation, Thèse de Doctorat, Université de Bourgogne, 1988. [Google Scholar]
  13. J. J. MOREAU, Proximité et dualité dans un espace Hilbertien, Bull. Soc. Math. France 93, 1965, pp. 273-299. [EuDML: 87067] [MR: 201952] [Zbl: 0136.12101] [Google Scholar]
  14. G. B. PASSTY, Ergodic convergence to a zero of the sum of monotone operators in Hilbert spaces, J. of Math, Anal and Appl. 72, 1979 pp. 383-390. [MR: 559375] [Zbl: 0428.47039] [Google Scholar]
  15. G. PIERRA G., Decomposition through formalization in a product space, Math. Prog. 28, 1984, pp. 96-115. [MR: 727421] [Zbl: 0523.49022] [Google Scholar]
  16. R. T. ROCKAFELLAR, Convex analysis, Princeton University Press, 1970. [MR: 274683] [Zbl: 0193.18401] [Google Scholar]
  17. R. T. ROCKAFELLAR, Monotone operators and the proximal point algorithm in convex programming, SIAM J. on Control and Optim. 14, 1976, pp. 877-898. [MR: 410483] [Zbl: 0358.90053] [Google Scholar]
  18. R. T. ROCKAFELLAR, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149, 1970, pp. 75-88. [MR: 282272] [Zbl: 0222.47017] [Google Scholar]
  19. J. E. SPINGARN, Partial inverse of a monotone operator, Appl. Math. Optim. 10, 1983, pp. 247-265. [MR: 722489] [Zbl: 0524.90072] [Google Scholar]
  20. G. STAMPACCHIA, Variational inequalities, in Theory and Applications of Monotone Operators, A. Ghizetti, 1969. [MR: 425699] [Zbl: 0247.47050] [Google Scholar]
  21. A. YASSINE, Études adaptatives et comparatives de certains algorithmes en optimisation. Implémentations effectives et applications, Thèse de Doctorat, Université de Grenoble, 1989. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you