Free Access
Issue
ESAIM: M2AN
Volume 27, Number 3, 1993
Page(s) 375 - 392
DOI https://doi.org/10.1051/m2an/1993270303751
Published online 31 January 2017
  1. H. ATTOUCH, Variational convergence for functions and operators, Pitman, 1984. [MR: 773850] [Zbl: 0561.49012]
  2. D. P. BERTSEKAS and J. N. TSITSIKLIS, Parallel and Distributed Computation, Prentice-Hall Int., 1989. [Zbl: 0743.65107]
  3. M. A. BOUGHAZI, Contribution à l'étude des algorithmes d'optimisation en Analyse des Données, Thèse de Doctorat, Université de Grenoble, 1987.
  4. H. BREZIS, Opérateurs maximaux monotones, Mathematics Studies 5, North Holland, 1973.
  5. H. BREZIS and P. L. LIONS, Produits infinis de résolvantes, Israel J. of Math.29, 4, 1978, pp. 329-345. [MR: 491922] [Zbl: 0387.47038]
  6. F. BROWDER and W. PETRYSHIN, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. of Math. Anal and Appl. 20, 1967, pp. 197-228. [MR: 217658] [Zbl: 0153.45701]
  7. J. LEMORDANT and T. PHAM DINH, Algorithme proximal pour la résolution numérique d'équations d'évolution en vison de bas niveau, preprint.
  8. P. L. LIONS, Une méthode itérative de résolution d'une inéquation variationnelle, Israel J. of Math. 31, 2, 1978, pp. 204-208. [MR: 516257] [Zbl: 0395.49013]
  9. P. L. LIONS and B. MERCIER, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal. 16, 6, 1979, pp. 964-979. [MR: 551319] [Zbl: 0426.65050]
  10. P. MAHEY, H. VAN NGUYEN and D. T. PHAM, Proximal methods and decomposition of large convex programs, ARTEMIS RR877, 1992.
  11. B. MARTINET, Algorithmes pour la résolution de problèmes d'optimisation et de minimax, Thèse d'État, Univ. de Grenoble, 1972.
  12. C. MICHELOT, Problème de localisation : propriétés géométriques etrésolution par des méthodes d'optimisation, Thèse de Doctorat, Université de Bourgogne, 1988.
  13. J. J. MOREAU, Proximité et dualité dans un espace Hilbertien, Bull. Soc. Math. France 93, 1965, pp. 273-299. [EuDML: 87067] [MR: 201952] [Zbl: 0136.12101]
  14. G. B. PASSTY, Ergodic convergence to a zero of the sum of monotone operators in Hilbert spaces, J. of Math, Anal and Appl. 72, 1979 pp. 383-390. [MR: 559375] [Zbl: 0428.47039]
  15. G. PIERRA G., Decomposition through formalization in a product space, Math. Prog. 28, 1984, pp. 96-115. [MR: 727421] [Zbl: 0523.49022]
  16. R. T. ROCKAFELLAR, Convex analysis, Princeton University Press, 1970. [MR: 274683] [Zbl: 0193.18401]
  17. R. T. ROCKAFELLAR, Monotone operators and the proximal point algorithm in convex programming, SIAM J. on Control and Optim. 14, 1976, pp. 877-898. [MR: 410483] [Zbl: 0358.90053]
  18. R. T. ROCKAFELLAR, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149, 1970, pp. 75-88. [MR: 282272] [Zbl: 0222.47017]
  19. J. E. SPINGARN, Partial inverse of a monotone operator, Appl. Math. Optim. 10, 1983, pp. 247-265. [MR: 722489] [Zbl: 0524.90072]
  20. G. STAMPACCHIA, Variational inequalities, in Theory and Applications of Monotone Operators, A. Ghizetti, 1969. [MR: 425699] [Zbl: 0247.47050]
  21. A. YASSINE, Études adaptatives et comparatives de certains algorithmes en optimisation. Implémentations effectives et applications, Thèse de Doctorat, Université de Grenoble, 1989.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you