Free Access
Volume 27, Number 5, 1993
Page(s) 565 - 589
Published online 31 January 2017
  1. I. BABUšKA, J. E. OSBORN, 1991, Eigenvalue Problems. In : Handbook of Numerical Analysis, Vol. II, Finite Element Methods (Part 1), (eds. Ciarlet, P. G. & Lions, J. L.), North-Holland, Amsterdam, pp. 641-787. [MR: 1115240] [Zbl: 0875.65087] [Google Scholar]
  2. I. BABUšKA, J. E. OSBORN, 1989, Finite Element-Galerkin Approximation of the Eigenvalues and Eigenvectors of Selfadjoint Problems, Math. Comp., 52, 275-297. [MR: 962210] [Zbl: 0675.65108] [Google Scholar]
  3. U. BANERJEE, J. E. OSBORN, 1990, Estimation of the Effect of Numerical Integration in Finite Element Eigenvalue Approximation, Numer. Math., 56, 735-762. [EuDML: 133425] [MR: 1035176] [Zbl: 0693.65071] [Google Scholar]
  4. P. G. CIARLET, 1978, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam. [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  5. M. FEISTAUER, A. Ženíšek, 1987, Finite Element Solution of Nonlinear Elliptic Problems, Numer. Math., 50, 451-475. [EuDML: 133165] [MR: 875168] [Zbl: 0637.65107] [Google Scholar]
  6. R. GLOWINSKI, J. L. LIONS, R. TRÉMOLIERES, 1976, Analyse Numérique des Inéquations Variationnelles, Dunod, Paris. [Zbl: 0358.65091] [Google Scholar]
  7. S. G. MIKHLIN, 1978, Partielle Differentialgleichungen in der Mathematischen Physik, Akademie Verlag, Berlin. [MR: 513026] [Zbl: 0397.35001] [Google Scholar]
  8. J. NEČAS, 1967, Les Méthodes Directes en Théorie des Equations Elliptiques, Masson, Paris. [MR: 227584] [Google Scholar]
  9. J. NEDOMA, 1978, The Finite Element Solution of Parabolic Equations, Appl. Math., 23, 408-438. [EuDML: 15071] [MR: 508545] [Zbl: 0427.65075] [Google Scholar]
  10. L. A. OGANESIAN, L. A., RUKHOVEC, 1979, Variational Difference Methods for the Solution of Elliptic Problems, Izd. Akad. Nauk ArSSR, Jerevan. (In Russian). [Google Scholar]
  11. P.A. RAVIART, J. M. THOMAS, 1983, Introduction à l'Analyse Numérique des Equations aux Dérivées Partielles, Masson, Paris. [MR: 773854] [Zbl: 0561.65069] [Google Scholar]
  12. A. Ženíšek, 1987, How to Avoid Green's Theorem in the Ciarlet-Raviart Theory of Variational Crimes, Modélisation Math. Anal. Numér., 21, 171-191. [EuDML: 193495] [MR: 882690] [Zbl: 0623.65072] [Google Scholar]
  13. A. Ženíšek, 1990, Nonlinear Elliptic and Evolution Problems and their Finite Element Approximations, Academic Press, London. [MR: 1086876] [Zbl: 0731.65090] [Google Scholar]
  14. M. ZLÁMAL, 1973, Curved Elements in the Finite Element Method I. SIAM J. Numer. Anal, 10, 229-240. [MR: 395263] [Zbl: 0285.65067] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you