Free Access
Issue
ESAIM: M2AN
Volume 27, Number 6, 1993
Page(s) 651 - 671
DOI https://doi.org/10.1051/m2an/1993270606511
Published online 31 January 2017
  1. S. F. ASHBY, T. A. MANTEUFFEL, P. E. SAYLOR, 1990, A Taxonomy For Conjugate Gradient Methods, Siam J. Numer. Anal., 27. [MR: 1080338] [Zbl: 0723.65018] [Google Scholar]
  2. J. Y. BLANC, 1991, Contribution du parallélisme à la résolution d'un problème de répartition de charge dans les réseaux électriques, Thèse de l'institut polytechnique de Grenoble. [Google Scholar]
  3. P. CONCUS, G. GOLUB, D. P. O'LEARY, 1984, A Generalized Conjugate Gradient for the Numerical Solution of Elliptic Partial Differential Equations, in Numerical Analysis, série SIAM. [Zbl: 0595.65110] [Google Scholar]
  4. D. DELESALLE, D. TRYSTRAM, D. WENZEK, 1990, Tout ce que vous voulez savoir sur la Connection Machine, Rapport de Recherche LMC-IMAG. [Google Scholar]
  5. L. DESBAT, 1990, Critères de Choix des Paramètres de Régularisation : Application à la déconvolution, Thèse de l'université Joseph Fourier, Annexe B : Gradient Conjugué et parallélisme. [Google Scholar]
  6. J. DEMMEL, J. J. DONGARRA, J. DUCROZ, A. GREENBAUM, S. J. HAMMARLING, D. C. SORENSEN, 1988, A project for developing a Linear Algebra Library for high-performance computer, Aspect of computation on asynchronous parallel processors, M. Wright. [Google Scholar]
  7. J. J. DONGARRA, I. S. DUFF, D. C. SORENSEN, H. A. VAN DER VORST, 1991, Solving Linear Systems on Vector and Shared Memory Computers, Siam. [MR: 1084164] [Zbl: 0770.65009] [Google Scholar]
  8. J. J. DONGARRA, C. B. MOLER, J. R. BUNCH, G. W. STEWART, 1979, LINPACK user's guide, Siam philadelphia. [Zbl: 0476.68025] [Google Scholar]
  9. M. J. FLYNN, 1972, Some computer organisations and their effectiveness, IEEE Trans. on Computers C-21, 9. [Zbl: 0241.68020] [Google Scholar]
  10. G. FOX et al., 1988, Solving problems on concurrent processors : General techniques and regular problems (vol. I), Prentice-Hall. [Google Scholar]
  11. G. H. GOLUB, G. MEURANT, 1983, Résolution numérique des grands systèmes linéaires, Eyrolles Paris, collection CEA/EDF. [MR: 756627] [Zbl: 0646.65022] [Google Scholar]
  12. G. H. GOLUB, R. S. VARGA, 1961, Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second other Richardson iterative methods, Part I et Part II, Numerische Mathematik. [EuDML: 131486] [Zbl: 0099.10903] [Google Scholar]
  13. G. H. GOLUB, C. F. VAN LOAN, 1989, Matrix Computation, Second edition, Johns Hopkins. [MR: 1002570] [Zbl: 0733.65016] [Google Scholar]
  14. J. GUSTAFSSON, G. LINDSKOG, 1986, A preconditioning technique based on element matrix factorisations, Comp. Meth. Appl. Mech. Engng., 55. [MR: 844907] [Zbl: 0576.65022] [Google Scholar]
  15. A. L. HAGEMAN and D. M. YOUNG, 1981, Applied Iterative Methods, Academic Press. [MR: 630192] [Zbl: 0459.65014] [Google Scholar]
  16. G. L. HENNIGANet al., 1989, A proposed domain decomposition technique for finite element on FPS T-serie, Proceedings of 4th Conf. Hypercube. [Google Scholar]
  17. M. HESTENES, E. STIEFEL, 1952, Methods of Conjugate Gradient for Solving Linear Systems, Journal Res. Nat. Bur. Stan., vol. 49. [MR: 60307] [Zbl: 0048.09901] [Google Scholar]
  18. K. HWANG, F. A. BRIGGS, 1984, Computer Architecture and Parallel Processing, McGraw-Hill. [Zbl: 0534.68006] [Google Scholar]
  19. O. G. JOHNSON, C. A. MICCHELLI and G. PAUL, 1983, Polynomial Preconditionnings for Conjugate Gradient Calculations, SIAM J. Numer. Anal., vol. 20, pp. 362-376. [MR: 694525] [Zbl: 0563.65020] [Google Scholar]
  20. P. LASCAUX, R. THEODOR, 1987, Calcul matriciel appliqué à l'art de l'ingénieur, Masson. [MR: 883208] [Zbl: 0601.65017] [Google Scholar]
  21. P. LAURENT-GENGOUX, D. TRYSTRAM, 1988, Parallel conjugate gradient algorithm with local decomposition, Rapport de recherche TIM3-IMAG. [Google Scholar]
  22. O. A. McBRYAN, 1989, Connection Machine Application Performance, Boulder Research report. [Zbl: 0960.68527] [Google Scholar]
  23. [23] THINKING MACHINE CORPORATION, 1991, Connection Machine CM-200 Serie, Technical Summary. [Google Scholar]
  24. Y. SAAD, 1983 Practical use of polynomial preconditionings for the conjugate gradient method, Yale Research report YALEU/DCS/RR-282. [Zbl: 0601.65019] [Google Scholar]
  25. J. SALTZ, S. PETITON, H. BERRYMAN and A. RIFKIN, 1991, Performance effects of irregular communications patterns on massively parallel multiprocessors, NASA Contracter Report 187514. [Google Scholar]
  26. C. TONG, 1989, The Preconditioned Conjugate Gradient Method on the Connection Machine. Int. Jour. of Hight Speed Comp., vol. 1. [Zbl: 0725.65033] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you