Free Access
Issue
ESAIM: M2AN
Volume 27, Number 6, 1993
Page(s) 777 - 799
DOI https://doi.org/10.1051/m2an/1993270607771
Published online 31 January 2017
  1. E. SANCHEZ-PALENCIA, 1984, Perturbation of Eigenvalues in Thermoelasticity and Vibration of Systems with Concentrated Masses, Lecture Notes in Physics,195, Berlin, Heidelberg, New York : Springer, 346-368. [MR: 755735] [Zbl: 0542.73006]
  2. E. SANCHEZ-PALENCIA, H. TCHTAT, 1984, Vibration de systèmes élastiques avec masses concentrées, Rend. Sem. Mat. Univ. Politec. Torino, 42, 43-63. [MR: 834781] [Zbl: 0658.73044]
  3. C. LEAL, J. SANCHEZ-HUBERT, 1989, Perturbation of the eigenvalues of a membrane with concentrated mass. Quart. Appl. Math., vol. 47, 93-103. [MR: 987898] [Zbl: 0685.73025]
  4. U. A. GOLOVATII, S. A. NAZAROV, O. A. OLEINIK, 1990, Asymptotic decompositions of eigenvalues and eigenfunctins of problems on oscillating media with concentrated masses, Trudy Mat. inst. A.N S.S.S.R., 192, 42-60. [MR: 1097888] [Zbl: 0728.35077]
  5. J. SANCHEZ-HUBERT, E. SANCHEZ-PALENCIA, 1989, Vibration and Coupling of Continuous Systems Asymptotic Methods, Berlin, Heidelberg, New York, London, Paris, Tokyo : Springer-Verlag. [MR: 996423] [Zbl: 0698.70003]
  6. O. A. OLEINIK, G. A. YOSIFIAN, A. S. SHAMAEV, 1990, Mathematical Problems in Theory of Non-Homogeneous Media, Moscow : Izdat. Moskov. Universiteta. [Zbl: 0768.73003]
  7. V. G. MAZ'YA, S. A. NAZAROV, B. A. PLAMENEVSKII, 1981, On the asymptotics of solutions of elliptic boundary value problems in domains perturbed irregularly, Probl. mat. anal., 8, Leningrad : izdat. Leningrad Universiteta, 72-153 (Russian). [MR: 658154] [Zbl: 0491.35013]
  8. W. G. MAZJA, S. A. NASAROW, B. A. PLAMENEWSKI, 1990, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, Bd. 1, Berlin : Akademie-Verlag.
  9. V. G. MAZ'YA, S. A. NAZAROV, B. A. PLAMEENVSKII, 1983, On the singularities of solutions of the Dirichlet problem in the exterior of a slender cone, Matem. Sbornik, 122, 435-436 (Russian ; English transl. (1987) in Math. USSR Sbornik, 57, 317-349). [Zbl: 0599.35056]
  10. S. A. NAZAROV, 1986, Justification of asymptotic expansions of the eigenvalues of nonselfadjoint singularly perturbed elliptic boundary value problems, Matem.sbornik, 129, 307-337 (Russian ; English transl. (1987) in Math. USSR Sbornik,57, 317-349). [MR: 837128] [Zbl: 0618.35005]
  11. V. G. MAZ'YA, S. A. NAZAROV, 1989, On the singularities of solutions of the Neumann problem at a conical point, Sibirsk. Matem. Zh., 30, 52-63 (Russian). [EuDML: 63132] [MR: 1010835] [Zbl: 0701.35021]
  12. V. A. KONDRAT'EV, 1967, Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Mat. Obshch., 16, 209-292 (Russian ; English transl. (1967) in Trans. Moscow Math. Soc., 16). [MR: 226187] [Zbl: 0162.16301]
  13. S. A. NAZAROV, B. A. PLAMENEVSKII, 1991, Elliptic Problems in Domainswith Piecewise Smooth Boundaries, Moscow : Nauka (Russian).
  14. S. A. NAZAROV, 1989, On the Sanchez-Palencia problem with the Neumann boundary conditions, Izvestija VUZ. Matem. No. 11, 60-66 (Russian). [MR: 1045104] [Zbl: 0801.35092]
  15. I. C. GOGBERG, M. G. KREIN, 1965, Introduction to the theory of linear nonselfadjoint operators in Hilbert space, Moscow : Nauka (Russian ; English transl. (1969). Amer. Math. Soc., Providence, R.I.). [Zbl: 0181.13504]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you