Free Access
Issue |
ESAIM: M2AN
Volume 27, Number 7, 1993
|
|
---|---|---|
Page(s) | 863 - 894 | |
DOI | https://doi.org/10.1051/m2an/1993270708631 | |
Published online | 31 January 2017 |
- Y. BRENIER, 1984, Average multivalued solutions for scalar conservation laws, SIAM J. Numer. Anal., 21, 1013-1037. [MR: 765504] [Zbl: 0565.65054] [Google Scholar]
- P. N. CHILDS, K. W. MORTON, 1990, Characteristic Galerkin methods for scalar conservation laws in one dimension, SIAM J. Numer. Anal., 27, 553-594. [MR: 1041252] [Zbl: 0728.65086] [Google Scholar]
- R. COURANT, E. ISAACSON and M. REES, 1954 On the solution of non-linear hyperbolic differential equations by finite differences, Comm. Pure Appl. Math., 5, 243-264. [MR: 53336] [Zbl: 0047.11704] [Google Scholar]
- B. ENGQUIST and S. OSHER, 1981, One-sided difference approximations for nonlinear conservation laws, Mathematics of Camputation, 36, 321-352. [MR: 606500] [Zbl: 0469.65067] [Google Scholar]
- S. K. GODUNOV, 1959, Finite - difference method for numerical computation of discontinuous solutions of the equations of gas dynamics, Mat. SB. (N.S.), 7, 271-290. [Zbl: 0171.46204] [MR: 119433] [Google Scholar]
- J. B. GOODMAN and R. J. LEVEQUE, 1988, A geometrie approach to high resolution TVD schemes, SIAM J. Numer. Anal, 25, 268-284. [MR: 933724] [Zbl: 0645.65051] [Google Scholar]
- P. LESAINT, 1977, Numerical solution of the equation of continuity. In J. J. H. Miller, éd., Topics in Numerical Analysis III, Academie Press, 199-222. [MR: 658144] [Zbl: 0435.76010] [Google Scholar]
- K. W. MORTON, P. K. SWEBY, 1987, A comparison of flux-limited difference scheme and characteristic Galerkin methods for shock modelling, J. Comput, Phys., 73, 203-230. [Zbl: 0632.76077] [Google Scholar]
- K. W. MORTON, 1983, Characteristic Galerkin methods for hyperbolicproblems, in Proc. on Numerical Methods in Fluid Mechanics, Gesellsehaft für Angewandte Mathematik und Machanik, Rome, M. Pandolfi and R. Riva, eds.,Vieweg, Wiesbaden, 243-250. [Zbl: 0552.76005] [Google Scholar]
- K. W. MORTON, 1985, Generalized Galerkin methods for hyperbolic problems, Comput. Methods Appl, Mech. Engrg., 52, 847-871. [MR: 822763] [Zbl: 0568.76007] [Google Scholar]
- K. W. MORTON, 1982, Shock capturing, fitting and recovery. In E. Krause, editor, Proceedings of the Eighth International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, Vol. 170, 77-93, Springer-Verlag. [Google Scholar]
- K. W. MORTON and A. STOKES, 1982, Generalised Galerkin methods for hyperbolic problems, in Proc. Conf. Mathematics of Finite Elements and Applications IV, J. R. Whiteman, éd., Academie Press, 421-431. [MR: 696783] [Zbl: 0551.65076] [Google Scholar]
- I. NATANSON, 1955, Theory of Functions of a Real Variable, Vol. 1. Ungar, New York. [MR: 67952] [Zbl: 0064.29102] [Google Scholar]
- S. OSHER and S. CHAKRAVARTHY, 1984, High resolution schemes and the entropy condition, SIAM J. Numer. Anal., 21, 955-984. [MR: 760626] [Zbl: 0556.65074] [Google Scholar]
- P. L. ROE, 1981, Numerical algorithms for the linear wave equation, Royal Aircraft Establishment Technical Report 81047. [Google Scholar]
- J. SMOLLER, 1983, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York. [MR: 688146] [Zbl: 0508.35002] [Google Scholar]
- P. K. SWEBY, 1984, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal., 21, 995-1011. [MR: 760628] [Zbl: 0565.65048] [Google Scholar]
- B. VAN LEER, 1979, Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov's method, J. Comp. Phys., 32, 101-136. [Zbl: 0939.76063] [Google Scholar]
- A. VOLPERT, 1967, The spaces BV and quasilinear equations, Mat. Sb., 73, 255-302 ; English transl. in Math. USSR. Sb., 2, 225-267. [MR: 216338] [Zbl: 0168.07402] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.