Free Access
Volume 28, Number 1, 1994
Page(s) 1 - 35
Published online 31 January 2017
  1. R. B. BIRD, R. C. AMSTRONG and O. HASSAGER, Dynamics of Polymeric Liquid, vol. 1, Fluid Mechanics, 2nd ed. (1987) Wiley, New York. [Google Scholar]
  2. D. V. BOGER, Annu. Rev. Fluid Mech., 19 (1987) 157 : 182. [Google Scholar]
  3. A. N. BROOKS and T. J. R. HUGHES, Streamline-Upwind/Petrov-Galerkin Formulation for Convection Dominated Flow with Particular Emphasis on the Incompressible Navier-Stokes Equations, Comp. Meth. in Appl. Mech. and Eng, 32 (1982) pp. 199-259. [MR: 679322] [Zbl: 0497.76041] [Google Scholar]
  4. M. J. CROCHET and J. M. MARCHAL, A new mixed Finite Element for calculating Viscoelastic Flow, Journal of Non-Newtonian Fluid Mechanics, 26 (1987) pp. 77-114. [Zbl: 0637.76009] [Google Scholar]
  5. N. El KISSI, J. M. PIAU and B. TREMBLAY, Low Reynolds number flow visualisation of linear and branched silicones upstream of orifices dies, Journal of Non-Newtonian Fluid Mechanics (1988). [Google Scholar]
  6. R. E. EVANS and K. WALTERS, Flow characteristics associated with abrupt changes in geometry in the case of highly elastic liquid, Journal of Non-Newtonian Fluid Mechanics, 20 (1986) pp. 11-29. [Google Scholar]
  7. M. FORTIN and A. FORTIN, A new approach for the FEM simulation of viscoelastic flow, Journal of Non-Newtonian Fluid Mechanics, 32 (1989) pp. 295-310. [Zbl: 0672.76010] [Google Scholar]
  8. M. FORTIN and R. GLOWINSKI, Lagrangian Augmented Methods, (1981) North Holland. [Google Scholar]
  9. M. FORTIN and R. PIERRE, On the convergence of the mixed method of Crochet and Marchal for viscoelastic flow, (1989) Comput. Meth. in Appl. Mech. Eng. [MR: 1016647] [Zbl: 0692.76002] [Google Scholar]
  10. V. GIRAULT and P. A. RAVIART, Finite Element Approximation of the Navier-Stokes Equations, Lecture Notes in Mathematics, 749, (1979) Springer Verlag. [MR: 548867] [Zbl: 0413.65081] [Google Scholar]
  11. R. GLOWINSKI and J. PÉRIAUX, Numerical Methods for Nonlinear Problems in Fluid Dynamics, Proceeding of the International Seminar on Scientific Super-computer, (1987) Feb 2-6. [MR: 1026941] [Zbl: 0666.76080] [Google Scholar]
  12. J. B. GOODMAN and R. J. LEVEQUE, On the accuracy of stable scheme for two dimensional conservation laws, Soc. Ind. Appl. Math. Numer. anal., 25 (1988)pp. 268-284. [MR: 933724] [Zbl: 0645.65051] [Google Scholar]
  13. C. GUILLOPÉ and J. C. SAUT, Global existence and one-dimensional non-linear stability of shearing motions of viscoelastic fluids of Oldroyd type, Modélisation Mathématique et Analyse Numérique, 24 (1990) pp. 369-401. [EuDML: 193600] [MR: 1055305] [Zbl: 0701.76011] [Google Scholar]
  14. C. GUILLOPÉ et J. C. SAUT, Résultat d'existence pour les fluides viscoélastiques à loi de comportement de type différentiel, Compte-rendu de l'Académie des Sciences de Paris, 305, série I (1987) pp. 489-492. [MR: 916317] [Zbl: 0624.76008] [Google Scholar]
  15. D. D. JOSEPH, M. RENARDY and J. C. SAUT, Hyperbolicity and Change of Type in the Flow of Viscoelastic Fluids, Arch. Ration. Mech. Anal, 87 (1985) pp. 213-251. [MR: 768067] [Zbl: 0572.76011] [Google Scholar]
  16. R. KEUNIGS, Simulation of Viscoelastic Flow, in Fundamentals of Computer Modeling for Polymer Processing, C. L. Tucker III, Cari Hanser Verlag. [Google Scholar]
  17. P. LESAINT and P. A. RAVIART, On finite element methods for solving the neutron transport equation (1974) Carl de Boor, Academic Press. [Google Scholar]
  18. X. L. Luo and R. I. TANNER, A Decoupled Finite Element Streamline-Upwind Scheme for Viscoelastic Flow Problems, J. of Non-Newtonian Fluid Mechanics, 31 (1989) pp. 143-162. [Google Scholar]
  19. J. G. OLDROYD, On the formulation of Rheological equation of states, Proc, Roy. Soc. London, A200 (1950) pp. 523-541. [MR: 35192] [Zbl: 1157.76305] [Google Scholar]
  20. D. W. PEACEMAN and H. H. RACHFORD, The numerical solution of parabolic and elliptic differential equations, J. Soc. Ind. Appl. Math., 3 (1955) pp. 28-41. [MR: 71874] [Zbl: 0067.35801] [Google Scholar]
  21. M. RENARDY, Existence of Slow Steady Flows of Viscoelastic Fluids with Differential Constitutive Equations, Z. Angew. Math, u Mech., 65 (1985) pp. 449-451. [MR: 814684] [Zbl: 0577.76014] [Google Scholar]
  22. M. RENARDY, Recent advances in the mathematical theory of steady flow of viscoelastic fluids, J. of Non-Newtonian Fluid Mechanics, 9 (1988) pp. 11-24. [Zbl: 0666.76029] [Google Scholar]
  23. J. E. ROBERTS and J. M. THOMAS, Mixed and hybrid methods, in Handbook of Numerical Analysis, vol. 3, P. G. Ciarlet and J. L. Lions, North Holland, Amsterdam (Rapport de Recherche 737, INRIA 1987). [MR: 1115239] [Zbl: 0875.65090] [Google Scholar]
  24. P. SARAMITO, Simulation numérique d'écoulements de fluides viscoélastiques par éléments finis incompressibles et une méthode de directions alternées ; applications, thèse de l'INPG (1990) Grenoble. [Google Scholar]
  25. J. E. WELCH, F. H. HARLOW, J. P. SHANNON and B. J. DALY, The M.A.C. method, LASL report LA3425, Los Alamos Scientific Laboratory, 1965. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you