Free Access
Volume 28, Number 1, 1994
Page(s) 59 - 94
Published online 31 January 2017
  1. I. AGANOVIĆ, A. MIKELIĆ, 1992, Homogenization of nonstationary flow of a two-constituent mixture through a porous medium, Asymptotic Analysis, 6, 173-189. [MR: 1193110] [Zbl: 0763.76077] [Google Scholar]
  2. G. ALLAIRE, 1989, Homogenization of the Stokes flow in a connected porous medium, Asympt. Anal, 2, 203-222. [MR: 1020348] [Zbl: 0682.76077] [Google Scholar]
  3. G. ALLAIRE, 1991, Homogénéisation et convergence à deux échelles. Application à un problème de convection diffusion, C. R. Acad. Sci. Paris, 312, Ser. I, 581-586. [MR: 1101037] [Zbl: 0724.46033] [Google Scholar]
  4. T. ARBOGAST, J. DOUGLAS, U. HORNUNG, 1990, Derivation of the double porosity model of single phase fiow via homogenization theory, SIAM J. Math. Anal., 21, 823-836. [MR: 1052874] [Zbl: 0698.76106] [Google Scholar]
  5. T. ARBOGAST, J. DOUGLAS, U. HORNUNG, 1991, Modeling of naturally fractured reservoirs by formai homogenization techniques, Dautray R. (Ed.) Froutiers in Pure and Applied Mathematics, Elsevier, Amsterdam, 1-19. [MR: 1110588] [Zbl: 0727.76110] [Google Scholar]
  6. N. BAKHVALOV, G. PANASENKO, 1989, Homogenization : Averaging Processes in Periodic Media, Kluwer, Dordrecht. [MR: 1112788] [Zbl: 0692.73012] [Google Scholar]
  7. A. BENSOUSSAN, J. L. LIONS, G. PAPANICOLAOU, 1978, Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam. [MR: 503330] [Zbl: 0404.35001] [Google Scholar]
  8. A. P. BOURGEAT, 1985, Nonlinear homogenization of two-phase flow equations J. H. Lightbourne, S. M. Rankin (Eds), Physical Mathematics and Nonlinear Partial Differential Equations, 207-212. [MR: 826836] [Zbl: 0617.76117] [Google Scholar]
  9. A. P. BOURGEAT, 1986, Homogenization of two-phase flow equations, Proceedings Symposia Pure Mathem., 45, 157-163. [MR: 843558] [Zbl: 0641.76094] [Google Scholar]
  10. H. BRÉZIS, 1972, Problèmes unilatéraux, J. Math. pures et appl., 51, 1-168. [MR: 428137] [Zbl: 0237.35001] [Google Scholar]
  11. E. CANON, W. JÄGER, Homogenization for nonlinear adsorption-diffusion processes in porous media, to appear. [Google Scholar]
  12. D. CIORANESCU, J. SAINT-JEAN-PAULIN, 1979, Homogenization in open sets with holes, J. Math. Anal. Appl., 71, 590-607. [MR: 548785] [Zbl: 0427.35073] [Google Scholar]
  13. I. EKELAND, R. TEMAM, 1976, Convex Analysis and Variational Problems, North-Holland, Amsterdam. [MR: 463994] [Zbl: 0322.90046] [Google Scholar]
  14. A. FRIEDMAN, P. KNABNER, A Transport Model with Micro-and Macro-Structure, J. Differ. Equ., to appear. [Zbl: 0749.76073] [Google Scholar]
  15. K. GROGER, 1971, Zum Rand-Anfangswertproblem der Adsorption und Diffusion bei Festbettprozessen, Mathem. Nachr., 49, 251-259. [MR: 312832] [Zbl: 0307.35078] [Google Scholar]
  16. U. HORNUNG, 1991, Homogenization of Miscible Displacement in Unsaturated Aggregated Soils, G. Dal Maso, G. F. Dell'Antonio (Eds.) Composite Media and Homogenization Theory, Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, Boston, 143-153. [MR: 1145749] [Zbl: 0726.73061] [Google Scholar]
  17. U. HORNUNG, 1991, Miscible displacement in porous media influenced by mobile and immobile water, Rocky Mountain J. Math., 21, 645-669 corr. 1153-1158. [MR: 1121532] [Zbl: 0751.76062] [Google Scholar]
  18. U. HORNUNG, 1992, Applications of the homogenization method to flow and transport in porous media Xiao Shutie (Ed.) Summer School on Flow and Transport in Porous Media, World Scientific Publisher, Singapore, 167-222. [Zbl: 0790.76092] [Google Scholar]
  19. U. HORNUNG, W. JÄGER, 1987, A model for chemical reactions in porous media J. Warnatz, W. Jäger (Eds.) Complex Chemical Reaction Systems. Mathematical Modeling and Simulation, Chemical Physics, 47, 318-334. [MR: 924854] [Google Scholar]
  20. U. HORNUNG, W. JÄGER, 1991, Diffusion, convection, adsorption, and reaction of chemicals in porous media, J. Differ. Equat., 92, 199-225. [MR: 1120903] [Zbl: 0731.76080] [Google Scholar]
  21. U. HORNUNG, R. SHOWALTER, 1990, Diffusion models for fractured media, J. Math. Anal. Applics, 147, 69-80. [MR: 1044687] [Zbl: 0703.76080] [Google Scholar]
  22. J. L. LIONS, 1969, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod/Gauthier-Villars, Paris. [MR: 259693] [Zbl: 0189.40603] [Google Scholar]
  23. R. LIPTON, A. AVELLANEDA, 1990, A Darcy law for slow viscous flow past a stationary array of bubbles, Proc. Royal Soc. Edinburgh, 114A, 71-79. [Zbl: 0850.76778] [Google Scholar]
  24. A. MIKELIĆ, 1989, A convergence theorem for homogenization of two-phase miscible flow through fractured reservoirs with uniform fracture distributions, Applicable Analysis, 33, 203-214. [MR: 1030108] [Zbl: 0653.76067] [Google Scholar]
  25. A. MIKELIĆ, 1991, Homogenization of nonstationary Navier-Stokes equations in a domain with grained boundary, Ann, Mat. Pura e Appl., 158, 167-179. [MR: 1131849] [Zbl: 0758.35007] [Google Scholar]
  26. A. MIKELIĆ, I. AGANOVIĆ, 1987, Homogenization in a porous medium under a nonhomogeneous boundary condition, Boll. Un. Mat. Ital. (A) 1, 171-180. [MR: 898276] [Zbl: 0629.76102] [Google Scholar]
  27. A. MIKELIĆ, I. AGANOVIĆ, 1988, Homogenization of stationary flow of miscible fluids in a domain with a grained boundary, SIAM J. Math. Anal., 19, 287-294. [MR: 930027] [Zbl: 0645.76099] [Google Scholar]
  28. F. MURAT, 1978, Compacité par compensation, Ann. Scuola Norm. Sup. Pisa, Ser. 4, 5, 489-507. [EuDML: 83787] [MR: 506997] [Zbl: 0399.46022] [Google Scholar]
  29. G. NGUETSENG, 1989, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20, 608-623. [MR: 990867] [Zbl: 0688.35007] [Google Scholar]
  30. O. A. OLEINIK, S. M. KOZLOV, V. V. ZHIKOV, 1991, Homogenization Differential Operators, North-Holland, Amsterdam. [Google Scholar]
  31. E. SANCHEZ-PALENCIA, 1980, Non-Homogeneous Media and Vibration Theory, Springer Lecture Notes in Physics, 129. [MR: 578345] [Zbl: 0432.70002] [Google Scholar]
  32. K. SATTEL-SCHWIND, 1988, Untersuchung über Diffusionsvorgänge bei der Gelpermeations-Chromatographie von Poly-p-Methylstyrol, Dissertation, Fachbereich Chemie, Universität Heidelberg. [Google Scholar]
  33. K. SIEBEL, 1988, Diffusion in dispersen Medien. Homogenisierung, Diplomarbeit Fachbereich Mathematik, Universitat Heidelberg. [Google Scholar]
  34. J. SIMON, 1987, Compact sets in the space Lp(0, T ; B), Ann. Mat. Pura e Appl., 145, 65-96. [MR: 916688] [Zbl: 0629.46031] [Google Scholar]
  35. L. TARTAR, 1980, Incompressible fluid flow in a porous medium - convergence of the homogenization process, E. Sanchez-Palencia (Ed.) « Non-homogeneous media and vibration theory » Lecture Notes in Physics, 127, Springer, Berlin, 368-377. [Google Scholar]
  36. C. VOGT, 1982, A homogenization theorem leading to a Volterra integro-differential equation for permeation chromatography, Preprint 155, SFB 123, Universität Heidelberg. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you