Free Access
Volume 28, Number 2, 1994
Page(s) 141 - 176
Published online 31 January 2017
  1. A. BAMBERGER and T. HA DUONG, 1986, Formulation variationnelle espace-temps pour le calcul par potentiel retardé d'une onde acoustique, Math. Methods Appl. Sci., 8, 405-435. [MR: 859833] [Zbl: 0618.35069] [Google Scholar]
  2. A. BAMBERGER and T. HA DUONG, 1986, Formulation variationnelle espace-temps pour le calcul par potentiel retardé d'une onde acoustique; Problème de Neumann, Math. Methods Appl. Sci., 8, 598-608. [MR: 870995] [Zbl: 0636.65119] [Google Scholar]
  3. A. BAMBERGER, 1983, Approximation de la diffraction d'ondes élastiques, une nouvelle approche (I), (II), (III), Technical report, École Polytechnique, CMAP, Rapports Internes n° 91, 96, 98. [Zbl: 0571.73020] [Google Scholar]
  4. E. BÉCACHE, 1991, Résolution par une méthode d'équations intégrales d'un problème de diffraction d'ondes élastiques transitoires par une fissure. PhD thesis, Université de Paris 6. Thèse. [Google Scholar]
  5. E. BÉCACHE, 1993, A Variational Boundary Integral Equation Method for an Elastodynamic Antiplane Crack, Int. J. for Numerical Meth. in Eng., 36, 969-984 [MR: 1208455] [Zbl: 0772.73088] [Google Scholar]
  6. E. BÉCACHE, J.-C. NÉDÉLEC, N. NISHIMURA, 1993, Regularization in 3D for Anisotropic Elastodynamic Crack and Obstacle Problems, J. of Elasticity, 31, 25-46. [MR: 1221204] [Zbl: 0773.73029] [Google Scholar]
  7. D. E. BESKOS, 1987, Boundary elements methods in dynamic analysis, Appl. Mech. Rev., 40, 1-23. [Google Scholar]
  8. M. BONNET, 1986, Méthode des équations intégrales régularisées en élastodynamyque, PhD thesis, ENPC, Thèse. [MR: 884382] [Zbl: 0612.73083] [Google Scholar]
  9. H. D. BUI, 1977, An intgral equations method for sol ving the problems of a plane crack of arbitrary shape, J. Mech. Phys. Solids, 25, 29-39. [MR: 443528] [Zbl: 0355.73074] [Google Scholar]
  10. P. CORTEY-DUMONT, 1984, Simulation Numérique de Problèmes de Diffraction d'Ondes par une Fisure, PhD thesis, Université Paris VI, Thèse d'État. [Google Scholar]
  11. R. DAUTRAY and J. L. LIONS, 1985, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, vol. 2. Masson. [Zbl: 0642.35001] [Google Scholar]
  12. T. HA DUONG, 1990, On the transient acoustic scattering by a flat object, Japan J. Appl. Math., 7, 489-513. [MR: 1076300] [Zbl: 0719.35063] [Google Scholar]
  13. T. HA DUONG, 1992, On the boundary integral equations for the crack opening displacement of flat cracks, Integr. Equat. Oper. Th., 15, 427-453. [MR: 1155713] [Zbl: 0753.45005] [Google Scholar]
  14. V. A. KONDRAT'EV and O. A. OLEINIK, 1988, Boundary-value problems for the System of elasticity theory in unbounded domains. Korn's inequalities, Russian Math. Surveys, 43, 65-119. [MR: 971465] [Zbl: 0669.73005] [Google Scholar]
  15. G. KRISHNASAMY, F. J. RIZZO and T. J. RUDOLPHI, 1991, Hypersingular boundary integral equations : Their occurrence interpretation, regularization and computation. In P. K. Banerjee and S. Kobayashi, editors, Developments in Boundary Element Methods, vol. 7 ; Advanced Dynamic Analysis, Elsevier Applied Science Publishers. [Google Scholar]
  16. J. L. LIONS and E. MAGENES, 1968, Problèmes aux limites non homogènes et Applicaitons, vol. l, Dunod. [Zbl: 0165.10801] [Google Scholar]
  17. Ch. LUBICH, On multistep time discretization of linear initial-boundary value problems and their boundary integral equations, submitted to Numerische Mathematik. [Zbl: 0795.65063] [Google Scholar]
  18. P. A. MARTIN and F. J. RIZZO, 1989, On boundary integral equations for crack problems, Proc. Roy. Soc. London A, 421, 341-355. [MR: 985268] [Zbl: 0674.73071] [Google Scholar]
  19. J. C. NÉDÉLEC, 1982, Intégral Equations with non Integrable Kernels, Intégral Equations and Operator Theory, 5, 562-572. [MR: 665149] [Zbl: 0479.65060] [Google Scholar]
  20. J. C. NÉDÉLEC, 1983, Le Potentiel de Double Couche pour les Ondes Élastique, Internal report n° 99, C.M.A.P., École Polytechnique. [Google Scholar]
  21. N. NISHIMURA, Q. C. GUO, S. KOBAYASHI, 1987, Boundary Integral Equation Methods in Elastodynamic Crack Problems, In Brebbia, Wendland, and Kuhn, editors, Proc. 9th Int. Conf. BEM, vol. 2 : Stress Analysis Applications, pp. 279-291. Springer-Verlag. [Google Scholar]
  22. N. NISHIMURA and S. KOBAYASHI, 1989, A regularized boundary integral equation method for elastodynamic crack problems, Computat. Mech., 4, 319-328. [Zbl: 0675.73065] [Google Scholar]
  23. J. A. NITSCHE, 1981, On Korn's second inequality, RAIRO, Analyse numérique, 15, 237-248. [EuDML: 193380] [MR: 631678] [Zbl: 0467.35019] [Google Scholar]
  24. V. SLADEK and J. SLADEK, 1984, Transient elastodynamic three-dimensional problems in cracked bodies, Appl. Math. Model, 8, 2-10. [MR: 734034] [Zbl: 0525.73110] [Google Scholar]
  25. I. N. SNEDDON and M. LOWENGRUB, Crack Problems in the Classical Theory of Elasticity, John Wiley and Sons. [MR: 258339] [Zbl: 0201.26702] [Google Scholar]
  26. E. P. STEPHAN, 1986, A Boundary Integral Equation Method for Three-Dimensional Crack Problem in Elasticity, Math. Meth. in the Appl. Sci., 8, 609-623. [MR: 870996] [Zbl: 0608.73097] [Google Scholar]
  27. E. P. STEPHAN, 1987, Boundary Integral Equation for screen problem in R3 Integral Eq. and Oper. Theory, 10, 263. [Zbl: 0653.35016] [Google Scholar]
  28. TREVES, 1975, Basic Linear Partial Differential Equations, Academic Press. [Zbl: 0305.35001] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you