Free Access
Issue
ESAIM: M2AN
Volume 28, Number 2, 1994
Page(s) 141 - 176
DOI https://doi.org/10.1051/m2an/1994280201411
Published online 31 January 2017
  1. A. BAMBERGER and T. HA DUONG, 1986, Formulation variationnelle espace-temps pour le calcul par potentiel retardé d'une onde acoustique, Math. Methods Appl. Sci., 8, 405-435. [MR: 859833] [Zbl: 0618.35069]
  2. A. BAMBERGER and T. HA DUONG, 1986, Formulation variationnelle espace-temps pour le calcul par potentiel retardé d'une onde acoustique; Problème de Neumann, Math. Methods Appl. Sci., 8, 598-608. [MR: 870995] [Zbl: 0636.65119]
  3. A. BAMBERGER, 1983, Approximation de la diffraction d'ondes élastiques, une nouvelle approche (I), (II), (III), Technical report, École Polytechnique, CMAP, Rapports Internes n° 91, 96, 98. [Zbl: 0571.73020]
  4. E. BÉCACHE, 1991, Résolution par une méthode d'équations intégrales d'un problème de diffraction d'ondes élastiques transitoires par une fissure. PhD thesis, Université de Paris 6. Thèse.
  5. E. BÉCACHE, 1993, A Variational Boundary Integral Equation Method for an Elastodynamic Antiplane Crack, Int. J. for Numerical Meth. in Eng., 36, 969-984 [MR: 1208455] [Zbl: 0772.73088]
  6. E. BÉCACHE, J.-C. NÉDÉLEC, N. NISHIMURA, 1993, Regularization in 3D for Anisotropic Elastodynamic Crack and Obstacle Problems, J. of Elasticity, 31, 25-46. [MR: 1221204] [Zbl: 0773.73029]
  7. D. E. BESKOS, 1987, Boundary elements methods in dynamic analysis, Appl. Mech. Rev., 40, 1-23.
  8. M. BONNET, 1986, Méthode des équations intégrales régularisées en élastodynamyque, PhD thesis, ENPC, Thèse. [MR: 884382] [Zbl: 0612.73083]
  9. H. D. BUI, 1977, An intgral equations method for sol ving the problems of a plane crack of arbitrary shape, J. Mech. Phys. Solids, 25, 29-39. [MR: 443528] [Zbl: 0355.73074]
  10. P. CORTEY-DUMONT, 1984, Simulation Numérique de Problèmes de Diffraction d'Ondes par une Fisure, PhD thesis, Université Paris VI, Thèse d'État.
  11. R. DAUTRAY and J. L. LIONS, 1985, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, vol. 2. Masson. [Zbl: 0642.35001]
  12. T. HA DUONG, 1990, On the transient acoustic scattering by a flat object, Japan J. Appl. Math., 7, 489-513. [MR: 1076300] [Zbl: 0719.35063]
  13. T. HA DUONG, 1992, On the boundary integral equations for the crack opening displacement of flat cracks, Integr. Equat. Oper. Th., 15, 427-453. [MR: 1155713] [Zbl: 0753.45005]
  14. V. A. KONDRAT'EV and O. A. OLEINIK, 1988, Boundary-value problems for the System of elasticity theory in unbounded domains. Korn's inequalities, Russian Math. Surveys, 43, 65-119. [MR: 971465] [Zbl: 0669.73005]
  15. G. KRISHNASAMY, F. J. RIZZO and T. J. RUDOLPHI, 1991, Hypersingular boundary integral equations : Their occurrence interpretation, regularization and computation. In P. K. Banerjee and S. Kobayashi, editors, Developments in Boundary Element Methods, vol. 7 ; Advanced Dynamic Analysis, Elsevier Applied Science Publishers.
  16. J. L. LIONS and E. MAGENES, 1968, Problèmes aux limites non homogènes et Applicaitons, vol. l, Dunod. [Zbl: 0165.10801]
  17. Ch. LUBICH, On multistep time discretization of linear initial-boundary value problems and their boundary integral equations, submitted to Numerische Mathematik. [Zbl: 0795.65063]
  18. P. A. MARTIN and F. J. RIZZO, 1989, On boundary integral equations for crack problems, Proc. Roy. Soc. London A, 421, 341-355. [MR: 985268] [Zbl: 0674.73071]
  19. J. C. NÉDÉLEC, 1982, Intégral Equations with non Integrable Kernels, Intégral Equations and Operator Theory, 5, 562-572. [MR: 665149] [Zbl: 0479.65060]
  20. J. C. NÉDÉLEC, 1983, Le Potentiel de Double Couche pour les Ondes Élastique, Internal report n° 99, C.M.A.P., École Polytechnique.
  21. N. NISHIMURA, Q. C. GUO, S. KOBAYASHI, 1987, Boundary Integral Equation Methods in Elastodynamic Crack Problems, In Brebbia, Wendland, and Kuhn, editors, Proc. 9th Int. Conf. BEM, vol. 2 : Stress Analysis Applications, pp. 279-291. Springer-Verlag.
  22. N. NISHIMURA and S. KOBAYASHI, 1989, A regularized boundary integral equation method for elastodynamic crack problems, Computat. Mech., 4, 319-328. [Zbl: 0675.73065]
  23. J. A. NITSCHE, 1981, On Korn's second inequality, RAIRO, Analyse numérique, 15, 237-248. [EuDML: 193380] [MR: 631678] [Zbl: 0467.35019]
  24. V. SLADEK and J. SLADEK, 1984, Transient elastodynamic three-dimensional problems in cracked bodies, Appl. Math. Model, 8, 2-10. [MR: 734034] [Zbl: 0525.73110]
  25. I. N. SNEDDON and M. LOWENGRUB, Crack Problems in the Classical Theory of Elasticity, John Wiley and Sons. [MR: 258339] [Zbl: 0201.26702]
  26. E. P. STEPHAN, 1986, A Boundary Integral Equation Method for Three-Dimensional Crack Problem in Elasticity, Math. Meth. in the Appl. Sci., 8, 609-623. [MR: 870996] [Zbl: 0608.73097]
  27. E. P. STEPHAN, 1987, Boundary Integral Equation for screen problem in R3 Integral Eq. and Oper. Theory, 10, 263. [Zbl: 0653.35016]
  28. TREVES, 1975, Basic Linear Partial Differential Equations, Academic Press. [Zbl: 0305.35001]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you