Free Access
Issue
ESAIM: M2AN
Volume 28, Number 3, 1994
Page(s) 329 - 356
DOI https://doi.org/10.1051/m2an/1994280303291
Published online 31 January 2017
  1. M. A. ACKOGLU and U. KRENGEL, 1981, Ergodic theorem for superadditive processes, J. Reine angew. Math., 323,53-67. [EuDML: 152332] [MR: 611442] [Zbl: 0453.60039] [Google Scholar]
  2. H. ATTOUCH, 1984, Variational Convergence for functions and operators, Research Notes in Mathematics, Pitman, London. [MR: 773850] [Zbl: 0561.49012] [Google Scholar]
  3. H. ATTOUCH, D. AZE and R. WETS, 1988, Convergence of convex concave saddle functions : applications to convex programming and mecanics, Ann. Inst. H. Poincaré, 5, n° 6, 537-572. [EuDML: 78164] [MR: 978671] [Zbl: 0667.49009] [Google Scholar]
  4. J. P. AUBIN and H. FRANKOVSKA, 1990, Set Valued Analysis, Birkhäuser. [MR: 1048347] [Zbl: 0713.49021] [Google Scholar]
  5. J. M. BALL and F. MURAT, 1984, Wl,P-Quasiconvexity and Variational Problems for Multiple Integrals, Journal of Functional Analysis, 58, 222-253. [MR: 759098] [Zbl: 0549.46019] [Google Scholar]
  6. N. BOULEAU, 1988, Processus Aléatoires et Applications, Hermann. [Google Scholar]
  7. A. BRAIDES, 1985, Homogenization for some almost periodic coercive functionals, Rend. acad. naz., XL 103, 313-322. [MR: 899255] [Zbl: 0582.49014] [Google Scholar]
  8. C. CASTAING and M. VALADIER, 1977, Convex Analysis and measurable multifunctions, Lecture Notes in Mathematics, Vol. 580, Springer. [MR: 467310] [Zbl: 0346.46038] [Google Scholar]
  9. B. DACOROGNA, 1989, Direct Methods in the Calculus of Variations, Applied Mathematical Sciences, Springer. [MR: 990890] [Zbl: 0703.49001] [Google Scholar]
  10. G. DAL MASO and L. MODICA, A general Theory of Variational Functionals, In F. STROCCHI et al., Topics in Functional Analysis 1980-1981, Scuola Normale Superiore, Pisa, 149-221. [MR: 671757] [Zbl: 0493.49005] [Google Scholar]
  11. [11] 1985, Non Linear Stochastic Homogenization, Ann. Mat. Pura Appl, 346-389. [Zbl: 0607.49010] [Google Scholar]
  12. [12] 1986, Non Linear Stochastic Homogenization and Ergodic Theory, J. Reine angew. Math., 363, 27-42. [EuDML: 152835] [Zbl: 0582.60034] [Google Scholar]
  13. I. EKELAND and R. TEMAM, 1978, Convex analysis and variational problems, North-Holland. [MR: 569206] [Zbl: 0322.90046] [Google Scholar]
  14. C. B. Jr. MORREY, 1952, Quasi-convexity and the semicontinuity of multiple integrals, Pacific J. Math., 2, 25-53. [MR: 54865] [Zbl: 0046.10803] [Google Scholar]
  15. S. MÜLLER, 1987, Homogenization of Non Convex Integral Functionals and Cellular Elastic Material, Arch. Rat. Mec., 189-212. [MR: 888450] [Zbl: 0629.73009] [Google Scholar]
  16. K. SAB, 1989, Sur quelques méthodes en mécaniques aléatoire, thèse de l'E.N.P.C. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you