Free Access
Issue |
ESAIM: M2AN
Volume 28, Number 4, 1994
|
|
---|---|---|
Page(s) | 463 - 497 | |
DOI | https://doi.org/10.1051/m2an/1994280404631 | |
Published online | 31 January 2017 |
- J. L. AZEVEDO, Aeroelastic Analysis of Launch Vehicles in Transonic Flight, J. Spacecraft, vol. 26, n° 1, 14-23. [Google Scholar]
- R. BANK, 1988, PTLMG User's guide, Dept of Math, UCSD tech. report. [Google Scholar]
- J. BATINA, 1989, Unsteady Euler Algorithm with Unstructured Dynamic Mesh for Complex-Aircraft Aeroelastic Analysis, AIAA Paper 89-1189-CP. [Google Scholar]
- M. BEYLISHER, Y. KURYLEV, 1991, Boundary Control, Wave Field Continuation and Inverse Problems for the Wave Equation, Computers Math. Applic., vol. 22, nos 4/5, 27-52. [MR: 1127213] [Zbl: 0768.35077] [Google Scholar]
- O. BENDLKSEN, K. KOUSEN, 1987, Transonic Flutter Analysis Using the Euler Equations, AIAA Paper 87-1238. [Google Scholar]
- A. BESPALOV, Numerical solution of Maxwell equations by fictitious domains, INRIA Report. [Zbl: 0896.76084] [Google Scholar]
- J. BORIS, D. L. BOOK, 1976, Flux corrected transport, J. Comp. Phys., 20, 20, 397-431. [Zbl: 0325.76037] [Google Scholar]
- M. O. BRISTEAU, R. GLOWINSKI, J. PERIAUX, Solution of Helmoltz-Maxwell equations by Variational methods, INRIA Report (à paraître). [Zbl: 0795.65038] [Google Scholar]
- G. CHAVENT, G. JAFFRÉ, 1986, Mathematical methods and finite elements for reservoir simulations, North-Holland. [Zbl: 0603.76101] [Google Scholar]
- Y. CHOQUET-BRUHAT, 1969, Ondes Asymptotiques et approchées pour des systèmes d'équations aux dérivées partielles non linéaires, J. Math. Pures et Appliquées, 48, 117-158. [MR: 255964] [Zbl: 0177.36404] [Google Scholar]
- R. DAT, 1976, Détermination des caractéristiques numériques d'une structure par analyse de ses fonctions de transfert, Rev. Fr. de Mécanique, 59-69. [Google Scholar]
- R. DAT, 1978, Vibrations aéroélastiques Cours à l'ENSAE (Sup Aéro), dept, Structures matériaux technologie. [Google Scholar]
- A. DERVIEUX, 1985, Steady Euler simulations using unstructured meshes, Von Karman Lecture notes series 1884-04. [Google Scholar]
- Ph. DESTUYNDER, B. QUINNEZ, Tendances actuelles dans les modélisations des phénomènes aéro-élastiques, Contrat CNES 2/91/004. [Google Scholar]
- J. DONEA, 1984, A Taylor-Galerkin method for convective transport problems, J. Numer. Meth. Eng, 20, 101-120 (See also J. DONEA, L. QUARTAPELLE, V. SELMIN, 1987, An analysis of time discretization in the Finite Element Solution of Hyperbolic problems, J. Comp. Physics, 70, 2. [MR: 830474] [Zbl: 0524.65071] [Google Scholar]
- B. ENQUIST and A. MAJDA, 1979, Radiation Boundary Condition for Acoustic and elastic Wave Calculations, Comm. Pure. and Applied Math., 32, 313-357. [MR: 517938] [Zbl: 0387.76070] [Google Scholar]
- C. FARHAT, S. LANTERI, 1992, Substructure approach for transonic fluid-structure interaction (Thèse de S. Lanteri), University of Boulder Colorado. [Google Scholar]
- A. FOURMAUX, A. LE MEUR, Computation of unsteady phenomena in transanic turbines, 4th Symp. on Unsteady Aerodynamics, Aachen, Sept. 1987. [Google Scholar]
- K. FUNG, 1991, Prediction of flutter at transonic speed, Int Symp on CFD. [Google Scholar]
- Y. FUNG, 1969, An introduction to the theory of Aeroelasticity, Dover Publication, New York. [Zbl: 1156.74001] [Google Scholar]
- J. GIBB, 1988, The cause and cure of periodic flow at transonic speed, ICAS paper 3.10.1. [Google Scholar]
- J. GOODMAN, 1986, Non linear stability of viscous shock profiles for conservation laws, Arch. Rat. Mech. Anal., 95, 527-563. [MR: 853782] [Zbl: 0631.35058] [Google Scholar]
- J. GOODMAN, 1991, Remark on the stability of viscous shock waves, SIAM M. Shearer ed., 66-72. [MR: 1142641] [Zbl: 0825.76399] [Google Scholar]
- K. HALL, W. CLARK, Prediction of unsteady aerodynamics loads in cascades using the linearized Euler eqs on deforming grids, AiAA 91-3378. [Google Scholar]
- K. C. HALL and E. F. CRAWLEY, 1989, Calculation of Unsteady Flows in Turbomachinery Using the Linearized Euler Equations, AIAA Journal, Vol. 2,AIAA Journal, Vol. 2, n° 6, 777-787. [Google Scholar]
- K. C. HALL and J. M. VERDON, Gust Response of a Cascade Operating in a Nonuniform Mean Flow, presented at the AGARD Propulsion and Energetics Panel 74th Specialists' Meetings on 1, unsteady Aerodynamic Phenomena in Turbomachines, Kirchberg Plateau, Luxemburg, August 28-September 1. [Google Scholar]
- L. HALPERN, 1982, Absorbing Boundary Conditions for the Discretisation Scheme of the one dimensional Wave Equation, Math. Comp., 38,415-429. [MR: 645659] [Zbl: 0482.65053] [Google Scholar]
- L. HALPERN and L. TREFETHEN, 1986, Well posedness of one Way Wave Equation and absorbing Boundary Conditions, Math. of Comp., 47, 176, 421-435. [MR: 856695] [Zbl: 0618.65077] [Google Scholar]
- R. HIGDON, 1986, Absorbing Boundary Conditions for difference approximation to multidimensionnal Wave Equation, Math. of Comp., 47, 176, 437-459. [MR: 856696] [Zbl: 0609.35052] [Google Scholar]
- T. J. R. HUGHES, M. MALLET, 1986, A new finite element formulation for computational fluid dynamics, Computer Meth. in Appl. Mech. and Eng., 54, 341-355. [MR: 836189] [Zbl: 0622.76074] [Google Scholar]
- J. HUNTER, A. MAJDA, R. ROSALES, 1986, Resonantly Interacting Weakly Non Linear Hyperbolic Waves II : Several Space Variables, Stud. Appl. Math., 75, 187-226. [MR: 867874] [Zbl: 0657.35084] [Google Scholar]
- A. JAMESON, 1978, Transonic flow calculations, Numerical methods in fluid mech. H. Wirz, J. Smolderen eds. McGraw-Hill, 1-87. [Google Scholar]
- C. JOHNSON, A. SZEPESSY, 1987, On the convergence of streamline diffusion finite element methods for hyperbolic conservation laws, in Numerical methods for compressible flows, T. E. Tedzuyar ed. AMD-78. [Zbl: 0634.65075] [Google Scholar]
- J. L. JOLY, G. METIVIER, J. RAUCH, Coherent and Focusing Multidimensional Nonlinear Geometric Optics, Prépublication n° 9205 Université de Bordeaux I, U.F.R. de Mathématiques et d'Informatique, 351 Cours de la Libération, 33405 Talence Cedex. [Zbl: 0836.35087] [Google Scholar]
- 1990, Formal and Rigourous Nonlinear High Frequency Hyperbolic Waves, in Proceedings of Varenna Conference on Nonlinear Hyperbolic Equations and Field Theory, M. K. Murthy, SD. Spagnolo eds., Pitman Research Note in Math. Series, 1992, 121-143. [MR: 1175206] [Zbl: 0824.35077] [Google Scholar]
- N. KIKUCHI, T. TORIGAKI, 1988, Adaptive finite element methods in computed aided engineering, Danmarks Tekniske HOJSKOLE, Matematisk report, 1988-09. [Google Scholar]
- L. LANDAU, E. LIFSCHITZ, 1953, Mécanique des Fluides, MIR Moscou. [Google Scholar]
- P. LAX, R. PHILLIPS, 1989, Scattering theory (revised ed.), Academic Press. [MR: 1037774] [Zbl: 0697.35004] [Google Scholar]
- J. LE BALLEUR, Ph. GIRODOUX, 1984, Méthode numérique semi-implicite et instationnaire d'interaction fluide visqueux-fluide parfait pour les écoulements décollés transsoniques, La Recherche Aérospatiale, French and Enghsh editions. [Zbl: 0546.76023] [Google Scholar]
- J. LE BALLEUR, Ph. GIRODOUX, 1985, Calculs d'aérodynamique instationnaire sur des configurations aéroélastiques 2D et 3D définies par l'AGARD, ONERA pub 1985. [Google Scholar]
- A. LERAT, 1985, Implicit methods of second-order accuracy for the Euler equations, AIAA Paper 83-1925, AIAA Journal, vol. 23 33-40. [MR: 770080] [Zbl: 0556.76054] [Google Scholar]
- D. R. LINDQUIST and M. B. GILES, 1991, On the Validity of Linearized Unsteady Euler Equations with Shock Capturing, AIAA Paper 91-1598-CP, Honolulu, Hawai, June 24-27. [Zbl: 0792.76036] [Google Scholar]
- J. L. LIONS, 1989, la méthode HUM, Masson. [Google Scholar]
- R. LOHNER, 1987, 3D grid generation by the advancing front method, in Laminar and turbulent flows, C. Taylor, W. C. Habashi, H. Hafez eds. Pinnendge press. [Google Scholar]
- R. LOHNER, K. MORGAN, J. PERAIRE, O. C. ZIENKIEWICZ, Finite element methods for high speed flows, AIAA paper, 85, 1531. [Zbl: 0606.76089] [Google Scholar]
- A. MAJDA, Non linear Geometric Optic for Hyperbolic Systems of Conservation Laws, IMA. volume 2, Springer Verlag, New York, 115-1165. [Zbl: 0622.65117] [Google Scholar]
- G. MAJDA, W. STRAUSS et M. WEI, 1986. Imaginary poles of radial potentials, Tech. Report., Minneapolis MN55455. [MR: 902999] [Zbl: 0641.35052] [Google Scholar]
- A. MAJDA and R. ROSALES, 1984, Resonantly Interacting Weakly Non Linear Hyperbolic Waves I : a Single Space Variables, Stud. Appl. Math., 71, 149-179. [MR: 760229] [Zbl: 0572.76066] [Google Scholar]
- M. MALLET, 1985, A finite element method for computational fluid dynamics,Doctoral thesis, University of Stanford. [Google Scholar]
- H. MORAND et R. OHAYON, Interactions Fluides-Structures RMA, 23, Masson. [MR: 1180076] [Zbl: 0754.73071] [Google Scholar]
- B. PALMERIO, V. BILLET, A. DERVIEUX, J. PERIAUX, 1985, Self adaptive mesh refinements and finite element methods for solving the Euler equations, Proceeding of the ICFD conf., Reading. [Zbl: 0606.76076] [Google Scholar]
- R. PEYRET, T. TAYLOR, 1985, Computational methods for fluid flows, Springer series in computational physics. [MR: 770204] [Zbl: 0717.76003] [Google Scholar]
- O. PIRONNEAU, 1983, Optimal shape design for elliptic Systems, Springer. [MR: 725856] [Zbl: 0534.49001] [Google Scholar]
- F. PLATZER, O. CARTA, 1987, Unsteady turbomachinery aerodynamics, vol. 1, AGARD-AG-298. [Google Scholar]
- O. POISSON, 1993, Calcul des pôles de résonance associés a la diffraction d'ondes acoustiques et élastiques en dimension 2, Thèse Université de Paris Dauphine, UER Mathématiques de la décision. [Google Scholar]
- Y. ROCARD, 1943, Dynamique Générale des vibrations, Masson. [MR: 29559] [Zbl: 0061.41905] [Google Scholar]
- Y. SAAD, 1981, Krylov subspace methods for solving unsymmetric linear Systems, Math of Comp., 37, 105-126. [MR: 616364] [Zbl: 0474.65019] [Google Scholar]
- E. SANCHEZ-PALENCIA, 1980, Non-Homogeneous Media and Vibration Theory, Lecture notes in physics, 127. [MR: 578345] [Zbl: 0432.70002] [Google Scholar]
- T. SHIEH, J. SCHOEN and K. FUNG, Techniques for Accurate, Efficient Computation of Unsteady Transonic Flow, AIAA 91-0597, 1-5. [Google Scholar]
- C. SOIZE, 1990, Couplage fort fluide parfait, couche limite 2D compressible dans le cas des profils à bord d'attaque aigu. Cas Stationnaire, Rapport ONERA n. 42/1621 RY 093 R. [Google Scholar]
- C. SOIZE, Couplage fort fluide parfait, couche limite 2D compressible dans le cas des profils à bord d'attaque aigu, cas instationnaire des profils isolés et cas stationnaire des grilles d'aubes, Rapport Onera n. 43/1621 RY 093 R, 006. [Google Scholar]
- C. SOIZE, 1992, Strong coupling between inviscid fluid and boundary layer for airfoils with a sharp edge, II, 2D unsteady case for isilated airfoild and straight blade cascade, Rech. Aérosp., 3, 23-53. [Google Scholar]
- B. STOUFFLET, J. PERIAUX, L. FEZOUI, A. DERVIEUX, 1987, Numerical simulations of 3D hypersonic Euler flows around space vehicles using adaptive finite elements, AIAA paper 8705660. [Google Scholar]
- M. VAN DYKE, 1964, Perturbation Methods in Fluid Mechanics, Academic Press New York and London, 99-120. [MR: 176702] [Zbl: 0136.45001] [Google Scholar]
- V. VENKATAKRISHNAN and A. JAMESON, 1988, Computation of Unsteady Transonic Flows by the Solution of Euler Equations, AIAA Journal, vol. 26, n° 8, 974-981. [MR: 965136] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.