Free Access
Issue
ESAIM: M2AN
Volume 28, Number 5, 1994
Page(s) 611 - 665
DOI https://doi.org/10.1051/m2an/1994280506111
Published online 31 January 2017
  1. J. BEAR, 1988, Dynamics of Fluids in Porous Media, Dover Publication, Inc., New York. [Zbl: 1191.76002] [Google Scholar]
  2. R. B. BIRD, W. E. STEWART, E. N. LIGHFOOT, 1966, Transport Phenomena, John Wiley, New York. [Google Scholar]
  3. F. BREZZI, M. FORTIN, 1991, Mixed and Hybrid Finite Element Methods, Springer-Verlag. [MR: 1115205] [Zbl: 0788.73002] [Google Scholar]
  4. A. N. BROOKS, T. J. R. HUGHES, 1982, Streamline upwind/Petrov-Galerkin formulations for convective dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Meths, 32, 199-259. [MR: 679322] [Zbl: 0497.76041] [Google Scholar]
  5. B. COCKBURN, C. W. SHU, 1991, The Runge-Kutta local projection P' discontinuous Galerkin finite element method for scalar conservation laws, RAIRO-Model. Math. Anal. Numer., 25, 337-361. [EuDML: 193630] [MR: 1103092] [Zbl: 0732.65094] [Google Scholar]
  6. C. T. DAWSON, 1991, Godunov-mixed methods for advective flow problems in one space dimension, SIAM J. Numer. Anal., 28, 1282-1309. [MR: 1119271] [Zbl: 0741.65068] [Google Scholar]
  7. J. Jr. DOUGLAS, 1982, Simulation of miscible displacement in porous media by a modified method of characteristics procedure, In Numerical Analysis, Dundee 1981, vol. 912 of Lecture Notes in Mathematics, Springer-Verlag, Berlin. [MR: 654343] [Zbl: 0476.76100] [Google Scholar]
  8. J. Jr. DOUGLAS, 1984, Numerical methods for the flow of miscible fluids in porous media, In Numerical Methods in Coupled Systems, pp. 405-439, John Wiley and Sons Ltd., London, R. W. Lewis, P. Bettess and E. Hinton, Eds. [Zbl: 0585.76138] [Google Scholar]
  9. J. Jr. DOUGLAS, R. E. EWING, M. F. WHEELER, 1983, A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media, R. A. I. R. O., Anal. Numér., 17, 249-265. [EuDML: 193417] [MR: 702137] [Zbl: 0526.76094] [Google Scholar]
  10. J. Jr. DOUGLAS, R. E. EWING, M. F. WHEELER, 1983, The approximation of the pressure by a mixed method in the simulation of miscible displacement, R.A.I.R.O., Anal. Numér., 17, 17-33. [EuDML: 193407] [MR: 695450] [Zbl: 0516.76094] [Google Scholar]
  11. J. Jr. DOUGLAS, J. L. HENSLEY, Y. WEI, L. YEH, J. JAFFRÉ, P. J. PAES LEME, T. S. RAMAKRISHNAM, D. J. WILKINSON, 1992, A derivation for Darcy's law for miscible fluids and a revised model for miscible displacement in porous media, In Mathematical Modeling in Water Resources, vol. 2, pp. 165-178, Computational Mechamcs Publications, Elsevier Applied Science, Southampton, Boston, T. F. RUSSELL, E. R. EWING, C. A. BREBBIA, W. G. GRAY, G. F. PINDER, Eds. [Google Scholar]
  12. J. Jr. DOUGLAS, J. E. ROBERTS, 1983, Numerical methods for a model for compressible miscible displacement in porous media, Math. Comp., 41, 441-459. [MR: 717695] [Zbl: 0537.76062] [Google Scholar]
  13. J. Jr. DOUGLAS, T. F. RUSSELL, 1982, Numerical methods for convectiondominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal.,19, 871-885. [MR: 672564] [Zbl: 0492.65051] [Google Scholar]
  14. R. DURÁN, 1988, On the approximation of miscible displacement in porous media by a method of characteristics combined with a mixed method, SIAM J. Numer. Anal., 25, 989-1001. [MR: 960861] [Zbl: 0661.76096] [Google Scholar]
  15. R. E. EWING, 1983, The mathematics of reservoir simulation, Frontiers in Applied Mathematics, SIAM, Philadelphia. [MR: 770577] [Zbl: 0533.00031] [Google Scholar]
  16. R. E EWING, T. F. RUSSELL, M. F. WHEELER, 1983, Simulation of miscible displacement using mixed methods and a modified method of characteristics, In Proceedings, Seventh SPE Symposium on Reservoir Simulation, pp. 71-81, Dallas, Texas, Society of Petroleum Engineers, Paper SPE 12241. [Google Scholar]
  17. R. E. EWING, T. F. RUSSELL, M. F. WHEELER, 1984, Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics, Comp. Meth. Appl. Mech. Eng., 47, 73-92. [MR: 777394] [Zbl: 0545.76131] [Google Scholar]
  18. L. P. FRANCA, S. L. FREY, 1992, Stabilized finite element methods: II. The incompresible Navier-Stokes Equations, Comput. Meths. Appl. Mech. Engrg., 99, 209-233. [MR: 1186727] [Zbl: 0765.76048] [Google Scholar]
  19. L. P. FRANCA, S. L. FREY, T. J. R. HUGHES, 1992, Stabilized finite element methods : I. Application to the advective-diffusive model, Comput. Meths. Appl. Mech. Engrg., 95, 253-276. [MR: 1155924] [Zbl: 0759.76040] [Google Scholar]
  20. V. GIRAULT, P.- A. RAVIART, 1986, Finite Element Methods for Navier-Stokes Equations, Theory and Algonthms, Springer-Verlag, Berlin, Heidelberg, New York. [MR: 851383] [Zbl: 0585.65077] [Google Scholar]
  21. A. HARTEN, S. OSHER, 1987, Uniformly high-order accurate non-oscilatory schemes I, SIAM J. Numer. Anal., 24 279-309 [MR: 881365] [Zbl: 0627.65102] [Google Scholar]
  22. T. J. R. HUGHES, A. N. BROOKS, 1979, A multidimensional upwind scheme with no cross-wind diffusion, In Finite Element Methods for Convection Dominated Flows, pp. 19-35. ASME, New York, 1979 T. J. R. HUGUES, ed. [MR: 571679] [Zbl: 0423.76067] [Google Scholar]
  23. T. J. R. HUGHES, A. N. BROOKS, 1982, A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions : application to the streamline upwind procedure, In Finite Element Methods in Fluids, Wiley, Chichester, R. H. GALLAGHER, ed. [Google Scholar]
  24. T. J. R. HUGHES, L. P. FRANCA, G. M. HULBERT, 1989, A new finite element formulation for computational fluid dynamics : VIII The Galerkin/least-square method for convective-diffusive equations, Comput. Meths..Appl. Engrg., 73, 173-189. [MR: 1002621] [Zbl: 0697.76100] [Google Scholar]
  25. J. JAFFRE, J. E. ROBERTS, 1985, Upstream weighting and mixed finite elements in the simulation of miscible displacements, Modélisation Mathématique et Analyse Numérique, 19, 443-460. [EuDML: 193455] [MR: 807326] [Zbl: 0568.76096] [Google Scholar]
  26. C. JOHNSON, J. SARANEN, 1986, Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations, Math. Comp., 47, 1-18. [MR: 842120] [Zbl: 0609.76020] [Google Scholar]
  27. C. JOHNSON, V. THOMÉE, 1981, Error estimates for some mixed finite element methods for parabolic type problems, R. A. I. R. O., Anal. Numér., 14, 41-78. [EuDML: 193370] [MR: 610597] [Zbl: 0476.65074] [Google Scholar]
  28. S. OSHER, 1984, Convergence of generalized MUSCL schemes, SIAM J. Numer. Anal., 22, 947-961. [MR: 799122] [Zbl: 0627.35061] [Google Scholar]
  29. D. W. PEACEMAN, 1966, Improved treatment of dispersion in numerical calculation of multidimensional miscible displacement, Soc. Petroleum Engr. J., 6, 213-216. [Google Scholar]
  30. D. W. PEACEMAN, 1977, Fundamentals of Numerical Reservoir Simulation, Elsevier, New York. [Google Scholar]
  31. T. S. RAMAKRISHNAM, D. J. WILKINSON, pivate communication. [Google Scholar]
  32. T. F. RUSSELL, 1985, Time stepping along characteristics with incomplete iteration for a Galerkin approximation of miscible displacement in porous media, SIAM J. Numer. Anal., 22, 970-1013. [MR: 799124] [Zbl: 0594.76087] [Google Scholar]
  33. C. W. SHU, 1987, TVB uniformly high-order schemes for conservation laws, Math. of. Comp., 49, 105-121. [MR: 890256] [Zbl: 0628.65075] [Google Scholar]
  34. A. SZEPESSY, 1991, Convergence of a streamline diffusion finite element method for scalar conservation laws with boundary conditions, R. A. I. R. O. Modél. Math. Anal. Numér., 26, 749-782. [EuDML: 193647] [MR: 1135992] [Zbl: 0751.65061] [Google Scholar]
  35. Y. WEI, Discontinuous Galerkin - mixed finite element methods for convection - dominated diffusion problems, to appear. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you