Free Access
Issue |
ESAIM: M2AN
Volume 28, Number 6, 1994
|
|
---|---|---|
Page(s) | 761 - 780 | |
DOI | https://doi.org/10.1051/m2an/1994280607611 | |
Published online | 31 January 2017 |
- O. M. RAYLEIGH, 1916, The Theory of Helmholtz Resonator, Proc. of Royal Soc., London, 92, 265-275. [Zbl: 46.1273.03] [JFM: 46.1273.03] [Google Scholar]
- J. M. MILES, 1971, Scattering by a Spherical Cap, Journ. Acoust. Soc. of America, 50, 892-903. [Google Scholar]
- R. R. GADYL'SHIN, 1990, On the amplitude of oscillations in Helmholtz resonator, Dokl. Akad. Nauk. SSSR, 310, 1094-1097. [MR: 1050165] [Google Scholar]
- R. R. GADYL'SHIN, 1992, Surface potentials and the method of matched asymptotic expansions in a problem of Helmholtz resonator, Algebra i Analiz, 4 88-115. [MR: 1182395] [Zbl: 0787.35024] [Google Scholar]
- P. D. LAX, R. S. PHILLIPS, 1967, Scattering Theory, Academic Press, New York. [MR: 217440] [Zbl: 0186.16301] [Google Scholar]
- J. SANCHEZ-HUBERT, E. SANCHEZ-PALENCIA, 1989, Vibration and Coupling of Continuons Systems. Asymptotic Methods, Berlin, Springer-Verlag. [MR: 996423] [Zbl: 0698.70003] [Google Scholar]
- R. R. GADYL'SHIN, 1992, The method of matched asymptotic expansions in the problem of acoustic Helmholtz resonator, Prikl. Mat. Mekh., 56, 412-418. [MR: 1191827] [Zbl: 0786.76075] [Google Scholar]
- [8]R. R. GADYL'SHIN, 1992, On influence of choice of location for hole and on its form to properties of acoustic resonator, Teor i mat. fiz., 93, 107-118. [MR: 1226213] [Google Scholar]
- R. R. GADYL'SHIN, 1992, About merged poles of an acoustic resonator, Doklady Akademii Nauk SSSR, 324, 773-776. [MR: 1201688] [Google Scholar]
- R. R. GADYL'SHIN, 1992, On system of inserted resonators, Doklady Akademii Nauk SSSR, 326, 939-942. [MR: 1202315] [Zbl: 0793.76079] [Google Scholar]
- R. R. GADYL'SHIN, On quasi-stationary state of Helmholtz resonator, Prikl. Mat. Mekh. (to appear) [Google Scholar]
- M. D. VAN DYKE, 1964, Perturbation Method in Fluid Mechanics, Academic Press, New York. [MR: 176702] [Zbl: 0136.45001] [Google Scholar]
- A. H. NAYFEH, 1973, Perturbation Methods, John Wiley, New York. [MR: 404788] [Zbl: 0265.35002] [Google Scholar]
- A. M. IL'IN, 1989, Matched asymptotic expansions for solutions of boundary valued problems, Nauka, Moscow. [MR: 1007834] [Google Scholar]
- J. T. BEALE, 1973, Scattering Frequencies of Resonators, Comm. Pure and Applied Math., 26, 549-564. [MR: 352730] [Zbl: 0254.35094] [Google Scholar]
- R. M. BROWN, P. D. HISLOP, A. MARTINEZ, Eigenvalues and resonances for domains with tube : Neumann boundary conditions, J. Differential equation (to appear). [MR: 1310941] [Zbl: 0815.35075] [Google Scholar]
- R. R. GADYL'SHIN, On poles of acoustic resonator, Funktsional. Anal. i Prilozhen. (to appear). [MR: 1264313] [Google Scholar]
- R. R. GADYL'SHIN, 1993, On scattering frequencies of acoustic resonator, C. R. Acad. Sci. Paris Sér. I, vol. 316, 859-963. [MR: 1218297] [Zbl: 0774.76071] [Google Scholar]
- S. JIMBO, Perturbation formula of eigenvalues in a singularly perturbed domain, J. Math. Soc., Japan (to appear). [MR: 1206658] [Zbl: 0785.35069] [Google Scholar]
- R. R. GADYL'SHIN, Asymptotic of second eigenfrequency for System of two body connected by thin tube, Teor. i mat. fiz. (to appear). [Google Scholar]
- D. COLTON, R. KRESS, 1983, Integral Equation Methods in Scattering Theory, John Willey & Sons, New York. [MR: 700400] [Zbl: 0522.35001] [Google Scholar]
- V. G. MAZ'YA, S. A. NAZAROV, B. A. PLAMENEVSKY, 1984, Asymptotical expansion of eigenvalues of boundary value problems for Laplacian, Izv. Akad. Nauk SSSR, Ser. mat., 48, 347-371. [MR: 740795] [Zbl: 0566.35031] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.