Free Access
Volume 28, Number 7, 1994
Page(s) 903 - 919
Published online 31 January 2017
  1. S. AGMON, A. DOUGLIS, L. NIRENBERG, 1964, Estimates Near the Boundary for Solutions of Elliptic Partial Differential Equations Satisfying General Boundary Conditions II, Comm. Pure Appl. Math., 17, 35-92. [MR: 162050] [Zbl: 0123.28706] [Google Scholar]
  2. C. BEGUE, C. CONCA, F. MURAT, O. PIRONNEAU, 1989, Les équations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression, Nonlinear Partial Differential Equations and Their Applications, College de France Seminar, Pitman Res. Notes in Math., 181, 179-264. [MR: 992649] [Zbl: 0687.35069] [Google Scholar]
  3. A. BENDALI, J.-M. DOMINGUEZ, S. GALLIC, 1985, Variational Approach for the Vector Potential Formulation of the Stokes and Navier-Stokes Problems in Three Dimensional Domains, J. Math. Anal, and Appl., 107, 537-560. [MR: 787732] [Zbl: 0591.35053] [Google Scholar]
  4. J. H. BRAMBLE, J. E. PASCIAK, A. H. SCHATZ, 1986, The construction of Preconditioners for Elliptic Problems by Substructuring, I, Math. Comp. 47, 103-134. [MR: 842125] [Zbl: 0615.65112] [Google Scholar]
  5. J. H. BRAMBLE, J. E. PASCIAK, J. Xu, 1991, Analysis of Multigrid Algorithms with Non-nested Spaces or Non-inherited Quadratic Forms, Math. Comp., 56, 389-414. [Zbl: 0699.65075] [Google Scholar]
  6. P. G. ClARLET, 1978, The Finite Element Method in Elliptic Problems, North-Holland, Amsterdam, 1978. [Zbl: 0383.65058] [Google Scholar]
  7. J.-M DOMINGUEZ, 1983, Formulations en Potential Vecteur du système de Stokes dans un Domaine de R3, Pub. lab. An.Num., L.A., 189, Univ. Paris VI. [Google Scholar]
  8. K. O. FRIEDRICHS, 1955, Differential forms on Riemannian Manifolds, Comm. Pure Appl. Math., 8, 551-590. [MR: 87763] [Zbl: 0066.07504] [Google Scholar]
  9. V. GEORGESCU, 1979, Some Boundary Value Problem for Differential Formson Compact Riemannian Manifolds, Ann. Mat. Para Appl., 122, 159-198. [MR: 565068] [Zbl: 0432.58026] [Google Scholar]
  10. V. GIRAULT, 1988, Incompressible Finite Element Methods for Navier-Stokes equations with Nonstandard Boundary Conditions in R3, Math. Comp., 51, 55-74. [MR: 942143] [Zbl: 0666.76053] [Google Scholar]
  11. V. GIRAULT, P.-A. RAVIART, 1986, Finite Element Methods for Navier-Stokes Equations, Springer Series in Computational Mathematics, Springer-Verlag. [MR: 851383] [Zbl: 0585.65077] [Google Scholar]
  12. P. LEE, 1990, On the Vector-Scalar Potential Formulation of the Three Dimensional Eddy Current Problem, Thesis, Cornell University. [Google Scholar]
  13. P. LEE, 1993, A Lagrange Multiplier Method for the Interface Equations from Electromagnetic Applications, SIAM J. Numer. Anal, 30, 478-507. [MR: 1211401] [Zbl: 0773.65084] [Google Scholar]
  14. J.-L. LIONS, E. MAGENES, 1972, Non-homogeneous Boundary Value Problemsand Applications, I, Springer. [Zbl: 0223.35039] [Google Scholar]
  15. P. NEITTAANMAKI, J. SARANEN, 1980, Finite Element Approximation of Electromagnetic Fields in Three Dimensional Space, Numer. Funct. Anal. Optimiz., 2, 487-506. [MR: 605756] [Zbl: 0451.65087] [Google Scholar]
  16. R. VERFURTH, 1987, Mixed Finite Element Approximation of the Vector Potential, Numer. Math., 50, 685-695. [EuDML: 133178] [MR: 884295] [Zbl: 0596.76073] [Google Scholar]
  17. R. TEMAM, 1984, Navier-Stokes Equations, North-Holland. [MR: 769654] [Zbl: 0568.35002] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you