Free Access
Issue
ESAIM: M2AN
Volume 29, Number 1, 1995
Page(s) 3 - 21
DOI https://doi.org/10.1051/m2an/1995290100031
Published online 31 January 2017
  1. J. BARANGER, K. NAJIB, 1990, Analyse numérique des écoulements quasi newtoniens dont la viscosité obéit à la loi de puissance ou à la loi de Carreau, Numer. Math. 58,35-49. [EuDML: 133486] [MR: 1069652] [Zbl: 0702.76007] [Google Scholar]
  2. G. BAYADA, M. CHAMBAT, 1986, The transition between the Stokes equations and the Reynolds equation, a mathematical proof, Appl. Math. and Opt., 14, 73-93. [MR: 826853] [Zbl: 0701.76039] [Google Scholar]
  3. R. B. BIRD, R. C. ARMSTRONG, O. HASSAGER, 1987, Dynamics of polymeric liquids, vol. 1: fluid mechanics, John Wiley and Sons, New York. [Google Scholar]
  4. A. BOURGEAT, A. MIKELIĆ, 1992, Homogenization of a polymer flow through a porous medium, preprint no. 132, Équipe d'Analyse Numérique Lyon-Saint-Étienne (to appear in Nonlinear Anal. T.M.A. ). [MR: 1376100] [Zbl: 0863.76082] [Google Scholar]
  5. A. BOURGEAT, A. MIKELIĆ, R. TAPIÉRO, 1993, Dérivation des équations moyennées décrivant un écoulement non newtomen dans un domaine defaible épaisseur, C. R. Acad. Sci, 316,Série I, 965-970. [MR: 1218298] [Zbl: 0777.76006] [Google Scholar]
  6. H. BREZIS, 1983, Analyse fonctionnelle. Théorie et applications, Masson, Paris. [MR: 697382] [Zbl: 0511.46001] [Google Scholar]
  7. L. CATTABRIGA, 1961, Su un problema di contorno relativo ai sistemi di equazioni di Stokes, Rend. Mat. Sem. Univ. Padova, 31, 308-340. [EuDML: 107065] [MR: 138894] [Zbl: 0116.18002] [Google Scholar]
  8. H. DRIDI, 1982, Comportement asymptotique des équations de Navier-Stoke dans des domaines applatis, Bull. Sc. Math., 106, 369-385. [MR: 688196] [Zbl: 0512.35015] [Google Scholar]
  9. I. EKELAND, R. TEMAM, 1974, Analyse convexe et problèmes variationnels, Dunod, Paris. [MR: 463993] [Zbl: 0281.49001] [Google Scholar]
  10. V. GIRAULT, P. A. RAVIART, 1986, Finite element methods for Navier-Stokes equations, Springer Verlag, Berlin. [MR: 851383] [Zbl: 0585.65077] [Google Scholar]
  11. P. GRISVARD, 1985, Elliptic problems in non-smooth domains, Pitman, Boston. [Zbl: 0695.35060] [Google Scholar]
  12. V. A. KONDRATIEV, O. A. OLEINIK, 1988, Boundary value problems for the System of elasticity theory in unbounded domains. Korn's inequality, Russian Math Surveys, 43,5, 65-119. [MR: 971465] [Zbl: 0669.73005] [Google Scholar]
  13. H. LE DRET, 1991, Problèmes variationnels dans les multidomaines, R. M. A. 19, Masson, Paris. [MR: 1130395] [Zbl: 0744.73027] [Google Scholar]
  14. J.-L. LIONS, 1969, Quelques méthodes de résolution de problèmes aux limites non linéaires, Dunod, Paris. [MR: 259693] [Zbl: 0189.40603] [Google Scholar]
  15. J. -L. LIONS, 1973, Perturbations singulières dans les problèmes aux limites et en contrôle optimal, Springer Verlag, Berlin. [MR: 600331] [Zbl: 0268.49001] [Google Scholar]
  16. A. MIKELIĆ, 1991, Homogenization of nonstationary Navier-Stokes equations in a domain with a grained boundary, Annali di Mat. pura ed appl.,158, 167-179. [MR: 1131849] [Zbl: 0758.35007] [Google Scholar]
  17. P. P. MOSOLOV, V. P. MJASNIKOV, 1971, A proof of Korn's inequality, Soviet Math. Doklady., 12, No. 6, 1618-1622. [Zbl: 0248.52011] [Google Scholar]
  18. S. A. NAZAROV, 1990, Asymptotic Solution of the Navier-Stokes Problem on the flow of a thin layer of fluid, translated from Sibenan Math. J.,31, 2, 131-144. [MR: 1065588] [Zbl: 0712.76037] [Google Scholar]
  19. D. SANDRI, 1993, Sur l'approximation numérique des écoulements quasi-newtoniens dont la viscosité suit la loi de puissance ou le modèle de Carreau, M2AN, 27, 131-155. [EuDML: 193698] [MR: 1211613] [Zbl: 0764.76039] [Google Scholar]
  20. R. TEMAM, 1977 Navier Stokes equations, North Holland, Amsterdam. [MR: 609732] [Zbl: 0383.35057] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you