Free Access
Issue
ESAIM: M2AN
Volume 29, Number 1, 1995
Page(s) 97 - 122
DOI https://doi.org/10.1051/m2an/1995290100971
Published online 31 January 2017
  1. [A] M. AKIAN, 1990, Analyse de l'algorithme multigrille FMGH de résolution d'équations de Hamilton-Jacobi-Bellman, in A. Bensoussan, J.-L Lions (Eds.), Analysis and Optimization of Systems, Lecture Notes in Control and Information Science, n° 144, Springer-Verlag, 113-122. [MR: 1070728] [Zbl: 0712.93069]
  2. [BS] G. BARLES,P. E. SOUGANIDIS, 1991, Convergence of approximation schemes for fully non linear second order equations, Asymptotic Analysis, 4, 271-282. [MR: 1115933] [Zbl: 0729.65077]
  3. [BCM] M.-C. BANCORA-IMBERT, P.-L. CHOW, J.-L. MENALDI, 1989, On the numerical approximation of an optimal correction problem, SIAM J. Sci Statist. Comput., 9, 970-991. [MR: 963850] [Zbl: 0661.65150]
  4. [BeS] D. P. BERTSEKAS, S. SHREVE, 1978, Stochastic Optimal Control: the discrete time case, Academic Press, New York. [MR: 511544] [Zbl: 0471.93002]
  5. [C] I. CAPUZZO-DOLCETTA,, 1983, On a discrete approximation of the Hamilton-Jacobi equation of Dynamic Programming, Appl. Math. Optim., 10, 367-377. [MR: 713483] [Zbl: 0582.49019]
  6. [CDF] I. CAPUZZO-DOLCETTA, M. FALCONE, 1989, Discrete dynamic programming and viscosity solution of the Bellman equation, Annales de l'Institut H. Poincaré-Analyse non linéaire, 6, 161-184. [EuDML: 78193] [MR: 1019113] [Zbl: 0674.49028]
  7. [CF] F. CAMILLI, M. FALCONE, forthcoming.
  8. [CI] I. CAPUZZO-DOLCETTA, H. ISHII, 1984, Approximate solutions of the Bellman equation of Deterministic Control Theory, Appl. Math. Optim., 11, 161-181. [MR: 743925] [Zbl: 0553.49024]
  9. [CIL] M. CRANDALL, H. ISHII, P.-L. LIONS, 1991, A user guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27, 1-67. [MR: 1118699] [Zbl: 0755.35015]
  10. [FI] M. FALCONE, 1987, 1991, A numerical approach to infinite horizon problem,Appl. Math. Optim., 15, 1-13 and 23, 213-214. [MR: 866164] [Zbl: 0715.49023]
  11. [F2] M. FALCONE, 1985, Numerical solution of optimal control problems, Proceedings of the International Symposium on Numerical Analysis, Madrid.
  12. [FF] M. FALCONE, R. FERRETTI, 1994, Discrete-time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations, Numerische Mathematik, 67,315-344. [MR: 1269500] [Zbl: 0791.65046]
  13. [FIF] B. G. FITZPATRICK, W. H. FLEMING, Numerical Methods for an optimal investment/consumption model, to appear on Math. Operation Research. [MR: 1135050] [Zbl: 0744.90003]
  14. [FS] W. H. FLEMING, M. H. SONER, 1993, Controlled Markov processes and viscosity solutions, Springer-Verlag, New York. [MR: 1199811] [Zbl: 0773.60070]
  15. [GR] R. GONZALES, E. ROFMAN, 1985, On determmistic control problems : an approximation procedure for the optimal cost(part I and II), SIAM J. Control and Optimization, 23, 242-285. [Zbl: 0563.49025]
  16. [H] R. HOPPE, 1986, Multi-grid methods for Hamilton-Jacobi-Bellman equations, Numerische Mathematik, 49, 235-254. [EuDML: 133110] [MR: 848524] [Zbl: 0577.65088]
  17. [IL] H. ISHII, P.-L. LIONS, 1990, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Diff. Eq., 83, 26-78. [MR: 1031377] [Zbl: 0708.35031]
  18. [K] H. J. KUSHNER, 1977, Probability methods for approximations in stochastic control and for elliptic equations, Academic Press, New York. [MR: 469468] [Zbl: 0547.93076]
  19. [KD] H. J. KUSHNER, P. DUPUIS, 1992, Numerical methods for stochastic control problems in continuous time, Springer Verlag, New York. [MR: 1217486] [Zbl: 0754.65068]
  20. [Ll] P.-L. LIONS, 1983, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations part 1 the dynamic programming principle and applications, Comm. Partial Diff. Equations, 8, 1101-1174. [MR: 709164] [Zbl: 0716.49022]
  21. [L2] P.-L. LIONS, 1983, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations part 2 : Viscosity solutions and uniqueness, Comm. Partial Diff. Equations, 8, 1229-1270. [MR: 709162] [Zbl: 0716.49023]
  22. [LM] P.-L. LIONS, B. MERCIER, Approximation numérique des équations de Hamilton-Jacobi-Bellman, RAIRO Anal. Numer., 14, 369-393. [EuDML: 193367] [MR: 596541] [Zbl: 0469.65041]
  23. [M] J.-L. MENALDI, 1989, Some estimates for finite difference approximations, SIAM J. Control Optim., 27, 579-607. [MR: 993288] [Zbl: 0684.93088]
  24. [Q] J.-P. QUADRAT, 1980, Existence de solution et algorithme de résolutions numériques de problèmes stochastiques dégénérées ou non, SIAM J. Control and Optimization, 18, 199-226. [MR: 560048] [Zbl: 0439.93057]
  25. [S] P.-E. SOUGANIDIS, 1985, Approximation schemes for viscosity solutions of Hamilton-Jacobi equations, J. Diff. Eq., 57, 1-43. [MR: 803085] [Zbl: 0536.70020]
  26. [Su] M. SUN, 1993, Domain decomposition algorithms for solvign Hamilton-Jacobi-Bellman equations, Numerical Func. Anal. and Optim., 14, 145-166. [MR: 1210467] [Zbl: 0810.65065]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you