Free Access
Volume 29, Number 2, 1995
Page(s) 171 - 197
Published online 31 January 2017
  1. J. ADAM, A. SERVENIÈRE, J. NÉDÉLEC and P. RAVIART, 1980, Study of an implicit scheme for integrating Maxwell's equations, Comp.Meth. Appl. Mech. Eng., 22, 327-346. [MR: 579675] [Zbl: 0433.73067] [Google Scholar]
  2. G. BAKER and J. BRAMBLE, 1979, Semidiscrete and single step fully discrete approximations for second order hyperbolic equations, RAIRO Anal. Numer, 13, 75-100. [EuDML: 193340] [MR: 533876] [Zbl: 0405.65057] [Google Scholar]
  3. A. BOSSAVIT, 1990, Solving Maxwell equations in a closed cavity, and the question of « spurious » modes, IEEE Trans. Mag., 26, 702-705. [Google Scholar]
  4. P. CIARLET, 1978, The Finite Element Method for Elliptic Problems, vol. 4 of Studies in Mathematics and It's Applications, Elsevier North-Holland, NewYork. [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  5. F. DUBOIS, 1990, Discrete vector potential representation of a divergence free vector field in three dimensional domains : numerical analysis of a model problem, SIAM J. Numer. Anal., 27, 1103-1142. [MR: 1061122] [Zbl: 0717.65086] [Google Scholar]
  6. V. GlRAULT, 1988, Incompressible finite element methods for Navier-Stokes equations with nonstandard boundary conditions in R3, Math. Comp., 51,53-58. [Zbl: 0666.76053] [Google Scholar]
  7. V. GIRAULT, 1990, Curl-conforming finite element methods for Navier-Stokes equations with non-standard boundary conditions in R3, in The Navier-Stokes equations. Theory and Numerical Methods, Lecture Notes, 1431,Springer, 201-218. [MR: 1072191] [Zbl: 0702.76037] [Google Scholar]
  8. V. GIRAULT and P. RAVIART, 1986, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, New York. [MR: 851383] [Zbl: 0585.65077] [Google Scholar]
  9. M. KŘÍŽEK and P. NEITTAANMÄKI, 1989, On time-harmonic Maxwell equations with nonhomogeneous conductivities : solvability and FE-approximation, Aplikace Matematiky, 34, 480-499. [EuDML: 15604] [MR: 1026513] [Zbl: 0696.65085] [Google Scholar]
  10. R. LEIS, 1988, Initial Boundary Value Problems in Mathematical Physics, John Wiley, New York. [Zbl: 0599.35001] [Google Scholar]
  11. K. MAHADEVAN and R. MITTRA, 1993, Radar cross section computations of inhomogeneous scatterers using edge-based finite element method in frequency and time domains, Radio Science, 28, 1181-1193. [Google Scholar]
  12. K. MAHADEVAN, R. MITTRA and P. M. VAIDYA, 1993, Use of Whitney's edge and face elements for efficient finite element time domain solution of Maxwell's equation, Preprint. [Google Scholar]
  13. C. G. MAKRIDAKIS, 1992, On mixed finite element methods in linear elastodynamics, Numer. Math., 61, 235-260. [EuDML: 133619] [MR: 1147578] [Zbl: 0734.73074] [Google Scholar]
  14. P. MONK, 1993, An analysis of Nédélec's method for the spatial discretization of Maxwell's equations, J. Comp. Appl. Math., 47, 101-121. 3 [MR: 1226366] [Zbl: 0784.65091] [Google Scholar]
  15. J. NÉDÉLEC, 1980, Mixed finite elements in R3, Numer. Math., 35, 315-341. [EuDML: 186293] [MR: 592160] [Zbl: 0419.65069] [Google Scholar]
  16. J. NÉDÉLEC, Éléments finis mixtes incompressibles pour l'équation de Stokes dans R3, Numer. Math., 39, 97-112. [EuDML: 132783] [Zbl: 0488.76038] [Google Scholar]
  17. K. YEE, 1966, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Trans. on Antennas and Propagation, AP-16, 302-307. [Zbl: 1155.78304] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you