Free Access
Issue
ESAIM: M2AN
Volume 29, Number 3, 1995
Page(s) 303 - 337
DOI https://doi.org/10.1051/m2an/1995290303031
Published online 31 January 2017
  1. D. GOTTLIEB and S. A. ORSZAG, Numerical Analysis of Spectral Methods, CBMS-NSF, SIAM, Philadelphia, 1977. [Zbl: 0412.65058] [Google Scholar]
  2. Y. MADAY and A. QUARTERONI, Spectral and pseudospectral approximations of the Navier-Stokes equations, SIAM, J. Numer. Anal., 19, 1982, 761-780. [MR: 664883] [Zbl: 0503.76035] [Google Scholar]
  3. Kuo PEN-YU, The convergence of the spectral scheme for solving two-dimensional vorticity equation, J. Comp. Math., 1, 1983, 353-362. [MR: 838695] [Zbl: 0599.76030] [Google Scholar]
  4. GUO BEN-YU, Spectral method for solving Navier-Stokes equation, Scientia Sinica, 28, 1985, 1139-1153. [MR: 828694] [Zbl: 0626.76034] [Google Scholar]
  5. Y. MADAY and B. METIVET, Chebyshev spectral approximation of Navier-Stokes equations in a two dimensional domain, Model. Math. et Anal. Numer., 21, 1987, 93-123. [EuDML: 193499] [MR: 882688] [Zbl: 0607.76024] [Google Scholar]
  6. GUO BEN-YU and MA HE-PING, The Fourier pseudospectral method for three-dimensional vorticity equations, Acta Math. Appl. Sinica, 4, 1988, 55-68. [MR: 958583] [Zbl: 0691.35081] [Google Scholar]
  7. C. CANUTO, M. Y. HUSSAINI, A. QUARTERONI and T. A. ZANG, Spectral Methods in Fluid Dynamics, Springer-Verlag, Berlin, 1988. [MR: 917480] [Zbl: 0658.76001] [Google Scholar]
  8. Guo BEN-YU, Ma HE-PING, Cao WEI-MING and Huang HUI, The Fourier-Chebyshev spectral method for solving two-dimensional unsteady vorticity equations, J. Comp. Phys., 101, 1992, 207-217. [MR: 1173346] [Zbl: 0757.76047] [Google Scholar]
  9. Cao WEI-MING and Guo BEN-YU, Fourier-Chebyshev spectral method for three-dimensional voriticity equation with unilaterally periodic boundary condition, Appl. Math. J. of Chinese Uni, 7, 1992,350-366. [MR: 1193568] [Zbl: 0766.76070] [Google Scholar]
  10. Guo BEN-YU and Li JIAN, Fourier-Chebyshev pseudospectral method for two-dimensional vorticity equation, Numer. Math., 66, 1994, 329-346. [EuDML: 133766] [MR: 1246961] [Zbl: 0796.76069] [Google Scholar]
  11. R. J. ROACHE, Computational Fluid Dynamics, 2'nd edition, Hermosa Publisher, Albuquerque, 1976. [MR: 411358] [Zbl: 0251.76002] [Google Scholar]
  12. Y. MADAY and A. QUARTERONI, Legendre and Chebyshev spectral approximations of Burgers' equation, Numer. Math., 37, 1981, 321-332. [EuDML: 132733] [MR: 627106] [Zbl: 0452.41007] [Google Scholar]
  13. C. CANUTO and A. QUARTERONI, Approximation results for orthogonal polynomials in Sobolev spaces, Math. Comp., 38, 1982, 67-86. [MR: 637287] [Zbl: 0567.41008] [Google Scholar]
  14. C. CANUTO and A. QUARTERONI, Variational methods in the theoretical analysis of spectral approximations, in Spectral Methods for Partial Differential Equations, 55-78, éd. by Voigt, R. G., Gottlieb, D. and Hussaini, M. Y., SIAM-CBMS, Philadelphia, 1984. [MR: 758262] [Zbl: 0539.65080] [Google Scholar]
  15. Guo BEN-YU, Difference Methods for Partial Differential Equations, Science Press, Beijing, 1988. [Google Scholar]
  16. Ma HE-PING and Guo BEN-YU, The Chebyshev spectral method for Burgers-like equations, J. Comp. Math., 6, 1988, 48-53. [MR: 958603] [Zbl: 0641.65084] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you