Free Access
Volume 29, Number 6, 1995
Page(s) 657 - 686
Published online 31 January 2017
  1. G. ALLAIRE and R. V. KOHN, 1993, Optimal bounds on the effective behavior of a mixture of two well-ordered elastic materials, Quart. Appl. Math., LI, pp. 643-674. [MR: 1247433] [Zbl: 0805.73043] [Google Scholar]
  2. [2] G. ALLAIRE and R. V. KOHN 1993, Optimal design for minimum weight and compliance in plane stress usign extremal microstructures, European Journal of Mechanics (A/Solids), 12, pp. 839-878. [MR: 1343090] [Zbl: 0794.73044] [Google Scholar]
  3. M. AVELLANEDA, 1987, Optimal bounds and microgeometries for elastic two-phase composites, SIAM J. Appl Math., 47, pp. 1216-1228. [MR: 916238] [Zbl: 0632.73079] [Google Scholar]
  4. N. S. BAKHVALOV and G. P. PANASENKO, 1984, Averaged Processes in Periodic Media, Nauka, Moscow. [MR: 797571] [Zbl: 0607.73009] [Google Scholar]
  5. M. P. BENDSØE, 1989, Optimal shape design as a material distribution problem, Structural Optimization, 1, pp. 193-202. [Google Scholar]
  6. A. BENSOUSSAN, J. L. LIONS and G. PAPANICOLAOU, 1978, Asymptotic Analysis for Periodic Structures, North Holland. [MR: 503330] [Zbl: 0404.35001] [Google Scholar]
  7. J. DVOŘÁK, 1994, A reliable numerical method for computing homogenized coefficients, MAT Report 31, Mathematical Institute, Danish Technical University, Lyngby, Denmark, ISSN 0904-7611 ; submitted. [Google Scholar]
  8. G. A. FRANCFORT and F. MURAT, 1987, Optimal bounds for conduction in two-dimensinal, two-phase anisotropic media, Non-Classical Continuum Mechanics, pp. 97-125. [MR: 926503] [Zbl: 0668.73018] [Google Scholar]
  9. Y. GRABOVSKY, 1994, Microstructures minimizing the energy of a two phase elastic composite in two space dimensions. I : The confocal ellipse construction, preprint. [Zbl: 0870.73041] [Google Scholar]
  10. Y. GRABOVSKY, 1994, Microstructures minimizing the energy of a two phase elastic composite in two space dimensions. II : The Vidgergauz microstructure, preprint. [Zbl: 0877.73041] [Google Scholar]
  11. R. V. KOHN and G.W. MILTON, 1986, On bounding the effective conductivity of anisotropic composites, in Homogenization and Effective Moduli of Materials and Media, J. Ericksen et al, eds., Springer, pp. 97-125. [MR: 859413] [Zbl: 0631.73012] [Google Scholar]
  12. R. V. KOHN and G. STRANG, 1986, Optimal design and relaxation of variational problems I-III, Comm. Pure Appl Math., 39, pp. 113-137, 139-182, 353-377. [MR: 820342] [Zbl: 0621.49008] [Google Scholar]
  13. J. L. LIONS, 1981, Some Methods in the Mathematical Analysis of Systems and Their Control, Gordon and Breach Science Publishers, Inc. [MR: 664760] [Zbl: 0542.93034] [Google Scholar]
  14. K. LURIE and A. CHERKAEV, 1986, The effective properties of composites and problems of optimal design of constructions, Uspekhi Mekhaniki, 9, pp. 1-81. [MR: 885713] [Google Scholar]
  15. [15]K. LURIE and A. CHERKAEV, 1984, Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportion, Proc. Roy. Soc. Edinburgh, 99A, pp. 71-87. [MR: 781086] [Zbl: 0564.73079] [Google Scholar]
  16. G. W. MlLTON, 1990, On charactenzing the set of composite materials: the variational method and the translation method, Comm. Pure Appl. Math., pp. 63-125. [Zbl: 0751.73041] [Google Scholar]
  17. F. MURAT and L. TARTAR, 1985, Calcul des variations et homogénéisation, in Les Méthodes de l'Homogénéisation : Théorie et Applications en Physique, Eyrolles, pp. 319-369. [MR: 844873] [Google Scholar]
  18. O. PIRONNEAU, 1984, Optimal Design for Elliptic Problems, Springer. [Zbl: 0534.49001] [MR: 725856] [Google Scholar]
  19. E. SANCHEZ-PALENCÍA, 1980, Non-homogeneous media and vibration theory, in Lecture Notes in Physics, 147, Springer. [MR: 578345] [Zbl: 0432.70002] [Google Scholar]
  20. O. SIGMUND, Materials with prescribed constitutive parameters : an inverse homogenization problem, Int. J. Solids Structures (to appear). [MR: 1287768] [Zbl: 0946.74557] [Google Scholar]
  21. O. SIGMUND, 1994, Tailoring materials with prescribed elastic properties, DCAMM, Report 480, Danish Technical University. [Google Scholar]
  22. K. SUZUKI and N. KIKUCHI, 1991, A homogenization method for shape and topology optimization, Comp. Meth. AppL Mech. Engrg., 93, pp. 291-318. [Zbl: 0850.73195] [Google Scholar]
  23. L. TARTAR, Estimations fines de coefficients homogénéisés, in Ennio De Giorgi Colloquium, Pitman, pp. 168-187. [MR: 909716] [Zbl: 0586.35004] [Google Scholar]
  24. S. B. VIDGERGAUZ, 1989, Regular structures with extremal elastic properties, MTT, 24, pp. 57-63. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you