Free Access
Issue
ESAIM: M2AN
Volume 30, Number 1, 1996
Page(s) 39 - 82
DOI https://doi.org/10.1051/m2an/1996300100391
Published online 31 January 2017
  1. Ph. ANGOT et J. P. CALTAGIRONE, 1988, Homogénéisation numérique en thermique des structures hétérogènes périodiques, Actes EUROTHERM n°4, Nancy, pp. 122-126. [Google Scholar]
  2. Ph. ANGOT, 1989, Contribution à l'étude des transferts thermiques dans des systèmes complexes; Application aux composants électroniques, Thèse de Doctorat de l'Université Bordeaux I, Spécialité Mécanique. [Google Scholar]
  3. Ph. ANGOT and J. P. CALTAGIRONE, 1990, New graphical and computational architecture concept for numerical simulation on supercomputers, Proc, 2-nd World Congress on Computational Mechanics, Stuttgart, pp. 973-976. [Google Scholar]
  4. Ph. ANGOT, J. P. CALTAGIRONE et K. KHADRA, 1992, Une méthode adaptative de raffinement local : la Correction du Flux à l'Interface, C. R. Acad. Sci. Paris, 315, Série I, pp.739-745. [MR: 1183814] [Zbl: 0755.65120] [Google Scholar]
  5. Ph. ANGOT, J. P. CALTAGIRONE, K. KHADRA et P. MOREL, 1992, Concept de zoom en architecture de calcul; Etude comparative de trois méthodes adaptatives de raffinement local : L.D.C., F.A.C. et F.I.C., Rapport interne IMST 92-04, juin. [Google Scholar]
  6. Ph. ANGOT, 1994, Parallel multi-level and domain decomposition methods, Calculateurs parallèles, L.T.CP, 6, pp. 9-14. [Google Scholar]
  7. Ph. ANGOT et M. LAUGIER, 1994, La méthode F.I.C, de raccordement conservatif de sous-domaines emboîtés pour un modèle de circulation océanique, C. R. Acad.Sci. Paris, 319, Série II, pp. 993-1000. [Google Scholar]
  8. Ph. ANGOT and M. LAUGIER, 1995, Conservative matching of non-conforming grids on nested subdomains; Application to an ocean circulation model, Comput. Meth. Appl. Mech. Engrg., soumis. [Google Scholar]
  9. D. BAI and A. BRANDT, 1987, Local mesh refinement muitilevel techniques, SIAM J. Sci.Stat Comput, 8, pp. 109-134. [MR: 879406] [Zbl: 0619.65091] [Google Scholar]
  10. R. E. BANK and A. WEISER, 1985, Some a posteriori error estimates for elliptic partial differential equations, Math. Comp., 44, pp. 283-301. [MR: 777265] [Zbl: 0569.65079] [Google Scholar]
  11. R. E. BANK, 1986, A posteriori error estimates, adaptive local mesh refinement and multigrid iteration, Lecture Notes in Mathematics, W. Hackbusch and UTrottenberg, eds., Springer-Verlag, 1228,pp. 7-23. [MR: 896055] [Zbl: 0619.65092] [Google Scholar]
  12. R. E. BANK, T. F. DUPONT and H. YSERENTANT, 1988, The hierarchical basis multigrid methods, Numer. Math., 52, pp.427-458 [EuDML: 133245] [MR: 932709] [Zbl: 0645.65074] [Google Scholar]
  13. M. J. BERGER and J. OLIGER, 1984, Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput Phys., 53, pp.484-512. [MR: 739112] [Zbl: 0536.65071] [Google Scholar]
  14. C. BERNARDI, Y. MADAY and A. PATERA, 1989, A new nonconforming approach to domain decomposition : the mortar element method, Nonlinear Partial Differential Equations and their Applications, H, Brezis and J. L. Lions, eds., Pitman Research. [Zbl: 0797.65094] [Google Scholar]
  15. P. E. BJORSTAD and O. B. WIDLUND, 1986, Iterative methods for the solution of elliptic problems on regions partitioned into substructures, SIAM J. Numer. Anal, 23, pp. 1097-1120. [MR: 865945] [Zbl: 0615.65113] [Google Scholar]
  16. J. H. BRAMBLE, J. E. PASCIAK and A. H. SCHATZ, 1986, An iterative method for elliptic problems on regions partitioned into substructures, Math. Comp, 46,pp. 361-369. [MR: 829613] [Zbl: 0595.65111] [Google Scholar]
  17. J. H. BRAMBLE, R. E. EWING, J. E. PASCIAK and A. H. SCHATZ, 1988, A preconditioning technique for the efficient solution of problems with local grid refinement, Comput Meth. Appl. Mech, Engrg, 67, pp. 149-159. [Zbl: 0619.76113] [Google Scholar]
  18. J. H. BRAMBLE, J. E. PASCIAK and J. XU, 1990, Parallel multilevel preconditioners, Math. Comp., 55, pp. 1-22. [MR: 1023042] [Zbl: 0703.65076] [Google Scholar]
  19. A. BRANDT, 1973, Multi-Level Adaptive Techniques (MLAT) for fast numerical solution to boundary value problems, Lecture Notes in Physics, H. Cabannes and R. Temam, eds., Springer-Verlag, 18, pp. 82-89. [Zbl: 0259.76013] [Google Scholar]
  20. A. BRANDT, 1977, Multi-level adaptive solution to boundary-value problems, Math. Comp., 31, pp.333-390. [MR: 431719] [Zbl: 0373.65054] [Google Scholar]
  21. J. P. CALTAGIRONE, K. KHADRA et Ph. ANGOT, 1995, Sur une méthode de raffinement local multigrille pour la résolution des équations de Navier-Stokes, CR. Acad. Sci Paris, 320, Série IIb, pp. 295-302. [Zbl: 0834.76065] [Google Scholar]
  22. M. EL GANAOUI, 1993, Etude de schémas multigrilles adaptatifs pour un problème d'advection-diffusion, D.E.A. de Mécanique, Université Aix-Marseille II,juillet. [Google Scholar]
  23. W. HACKBUSCH and U. TRQTTENBERG, 1982, eds., Multigrid Methods, Lecture Notes in Mathematics, 960, Springer-Verlag. [MR: 685772] [Google Scholar]
  24. W. HACKBUSCH, 1984, Local Defect Correction Method and Domain Decomposition Techniques, in Defect Correction Methods, Theory and Applications, K. Böhmer and H. J. Stetter, eds., Computing Supplementum, Springer-Verlag, 5, pp. 89-113. [MR: 782692] [Zbl: 0552.65070] [Google Scholar]
  25. W. HACKBUSCH, 1985, Multi-Grid Methods and Applications, Series in Computational Mathematics, Springer-Verlag. [Zbl: 0595.65106] [Google Scholar]
  26. K. KHADRA, Ph. ANGOT and J. P. CALTAGIRONE, 1993, A comparison of locally adaptive multigrid methods ; L.D.C., F.A.C, and F.I.C., NASA Conf.Publ 3224, 6th Copper Mountain Conference on Multigrid Methods, N. D. Melson, S. F. McCormick and T. A. Manteuffel, eds., 1, pp.275-292. [Google Scholar]
  27. K. KHADRA, 1994, Méthodes adaptatives de raffinement local multigrille; Applications aux équations de Navier-Stokes et de l'énergie, Thèse de Doctorat de l'Université Bordeaux I, Spécialité Mathématiques Appliquées, mars. [Google Scholar]
  28. P. LE TALLEC, 1994, Domain decomposition methods in computational mechanics, Comput. Mech. Adv., 1, pp. 121-220. [MR: 1263805] [Zbl: 0802.73079] [Google Scholar]
  29. S. F. MCCORMICK, 1984, Fast Adaptive Composite Grid (F.A.C.) Methods : theory for the variational case, in Defect Correction Methods, Theory and Applications, K. Böhmer and H. J. Stetter, eds., Computing Supplementum, Springer-Verlag, 5, pp. 115-121. [MR: 782693] [Zbl: 0552.65071] [Google Scholar]
  30. S. F. MCCORMICK, ed., 1987, Multigrid Methods, Frontiers in Appl., Math., 3, SIAM, Philadelphie [MR: 972752] [Zbl: 0659.65094] [Google Scholar]
  31. S. F. MCCORMICK, 1989, Multilevel adaptive methods for partial differential equations, Frontiers in Appl. Math, 6, SIAM, Philadelphia. [MR: 1056696] [Zbl: 0707.65080] [Google Scholar]
  32. S. V. PATANKAR, 1980, Numerical heat transfer and fluid flow, Hemisphère Publishing Corporation, New-York. [Zbl: 0521.76003] [Google Scholar]
  33. U. RÜDE, 1993, Fully adaptive multigrid methods, SIAM J. Numer. AnaL, 30,pp. 230-248. [MR: 1202664] [Zbl: 0849.65090] [Google Scholar]
  34. J. XU, 1992, Iterative methods by space decomposition and subspace correction, SIAM Rev., 34, pp, 581-613. [MR: 1193013] [Zbl: 0788.65037] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you