Free Access
Issue
ESAIM: M2AN
Volume 30, Number 4, 1996
Page(s) 489 - 525
DOI https://doi.org/10.1051/m2an/1996300404891
Published online 31 January 2017
  1. G. ACQUARDRO QUACCHIA, 1987, Resoluçâo Computacional de um Problema de Viscoelasticidade Plana Incompressfvel via Elementos Finitos Mistos, Master's Dissertation. Pontificia Universidade Catolica do Rio de Janieiro. [Google Scholar]
  2. R. A. ADAMS, 1970, Sobolev Spaces, Academie Press, New York. [MR: 450957] [Zbl: 1098.46001] [Google Scholar]
  3. D. N. ARNOLD, F. BREZZI and M. FORTIN, 1984, A stable finite element method for the Stokes equation, Calcolo, 21-4, pp. 337-344. [MR: 799997] [Zbl: 0593.76039] [Google Scholar]
  4. G. ASTARITA and G. MARRUCCI, 1974, Principles of Non-Newtonian Fluid Mechanics, MGraw-Hill, New York. [Zbl: 0316.73001] [Google Scholar]
  5. I. BABUSKA, 1973, The finite element method with lagrange multipliers, Numer. Math., 20, pp. 179-192. [EuDML: 132183] [MR: 359352] [Zbl: 0258.65108] [Google Scholar]
  6. J. BARANGER and D. SANDRI, 1991, Approximation par éléments finis d'écoulements de fluides viscoélastiques. Existence de solutions approchées et majorations d'erreur. C. R. Acad. Sci. Paris, 312, Série I, pp. 541-544. [MR: 1099689] [Zbl: 0718.76010] [Google Scholar]
  7. R.B. BIRD, R. C. ARMSTRONG and O. HASSAGER, 1987, Dynamics of Polymenc Liquids, Vol. 1, Fluid Mechamcs, Second edition, John Wiley & Sons, New York. [Google Scholar]
  8. H. BREZZI, 1983, Analyse Fonctionnelle, Théorie et Applications, Masson, Paris. [MR: 697382] [Zbl: 1147.46300] [Google Scholar]
  9. F. BREZZI, 1974, On the existence, uniqueness and approximation of saddlle-point problems arising from lagrange multipliers, RAIRO, Série rouge, Analyse Numérique R-2, pp. 129-151. [EuDML: 193255] [MR: 365287] [Zbl: 0338.90047] [Google Scholar]
  10. P. G. CIARLET, 1986, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam. [Zbl: 0383.65058] [Google Scholar]
  11. M. J. CROCHET, A. R. DAVIES and K. WALTERS, 1984, Numencal Simulation of Non-Newtonian Flow, Elsevier, Amsterdam. [Zbl: 0583.76002] [Google Scholar]
  12. B. DUPIRE, 1985, Problemas Varionais Lineares, sua Aproximaçâo e Formulaçöes Mistas, Doctoral Thesis, Pontifïcia Universidade Católica do Rio de Janeiro. [Google Scholar]
  13. G. DUVAUT, 1990, Mécanique des Milieux Continus, Masson, Paris. [Google Scholar]
  14. G. DUVANT and J.-L. LIONS, 1972, Les Inéquations en Mécanique et en Physique, Masson, Paris. [Zbl: 0298.73001] [Google Scholar]
  15. A. FORTIN and M. FORTIN, 1990, A preconditioned generalized minimal residual algorithm for the numerical solution of viscoelastic flows, Journal of Non-Newtonian fluid Mechanics, 36, pp. 277-288. [Zbl: 0708.76012] [Google Scholar]
  16. M. FORTIN and R. PIERRE, 1988, On the convergence of the Mixed Method of Crochet & Marchal for Viscoelastic Flows, Comp. Meth. Appl. Mech. Engin., 73, pp. 341-350. [MR: 1016647] [Zbl: 0692.76002] [Google Scholar]
  17. L. FRANCA and R. STENBERG, 1991 Error analysis of some Galerkin-least-squares methods for the elasticity equations, SIAM Journal of Numerical Analysis, 28-6, pp. 1680-1697. [MR: 1135761] [Zbl: 0759.73055] [Google Scholar]
  18. P. GERMAIN, 1973, Cours de Mécanique des Milieux Continus, Masson & Cie, Paris. [MR: 368541] [Zbl: 0254.73001] [Google Scholar]
  19. V. GIRAULT and A. P. RAVIART, 1986, Finite Element Methods for Navier-Stokes Equations, Springer Serie in Computational Mathematics 5, Springer-Verlag, Berlin. [MR: 851383] [Zbl: 0585.65077] [Google Scholar]
  20. P. GRISVARD, 1992, Singularities in Boundary Values Problems, In Research Notes in Applied Mathematics, P. G. Ciarlet & J.-L. Lions eds., Masson & Springer Verlag, Paris. [MR: 1173209] [Zbl: 0766.35001] [Google Scholar]
  21. O. LADYZHENSKAYA, 1963, The Mathematical Theory of Viscous Incompressible Flow, Gordon & Breach, Reading, Berkshire. [MR: 155093] [Zbl: 0121.42701] [Google Scholar]
  22. P. LESAINT and P. A. RAVIART, 1976. On a finite element method for solving the neutron transport equations, in : Mathematical Aspects of Finite Element Methods in Partial Differential Equations, C. de Boor ed., Academic Press, New York. [Zbl: 0341.65076] [Google Scholar]
  23. J. L. LIONS and E. MAGENES, 1968, Problèmes aux Limites Non-homogènes et Applications, Dinod, Paris. [Zbl: 0165.10801] [Google Scholar]
  24. M. A. MONTEIRO SILVA RAMOS, 1993, Um Modelo Numérico para a Simulaçâo do Escoamento de Fluidos Viscoelâsticos via Elementos Finitos, Doctoral Thesis, Pontificia Univesidade Católica do Rio de Janeiro. [Google Scholar]
  25. J. PITKÄRANTA, 1982, On a mixed finite element method for the Stokes Problem in R3, RAIRO, Analyse Numérique, 16-3, pp. 275-291. [EuDML: 193400] [MR: 672419] [Zbl: 0488.76039] [Google Scholar]
  26. V. RUAS, 1980, Sur l'application de quelques méthodes d'éléments finis à la résolution d'un problème d'élasticité incompressible non linéaire, Rapport de Recherche 24, INRIA, Rocquencourt, France. [Google Scholar]
  27. V. RUAS, 1982, Une méthode d'éléments finis non conformes en vitesse pour le problème de Stokes tridimensionnel. Matematica Aplicada e Compuracional, 1-1, pp.53-74. [MR: 667618] [Zbl: 0489.76049] [Google Scholar]
  28. V. RUAS, 1985, Une méthode mixte contrainte-déplacement-pression pour la résolution de problèmes de viscoélasticité incompressible en déformations planes, C. R. Acad. Sc., Paris, 301, série II, 16, pp. 1171-1174. [MR: 827628] [Zbl: 0578.73041] [Google Scholar]
  29. V. RUAS, 1985, Finite element solution of 3D viscous flow problems using non standard degrees of freedom, Japan Journal of Applied Mathematics, 2-2, pp. 415-431. [MR: 839337] [Zbl: 0611.76038] [Google Scholar]
  30. V. RUAS and J. H. CARNEIRO DE ARAUJO, 1992, Un método de elementos finitos quadrilatelares mejorado para el sistema de Stokes asociado al flujo de fluidos viscoelâsticos, Revista Internacional sobre Métodos Numéricos para Càlculo y Diseno en Ingenieria, 8-1, pp.77-85. [MR: 1160319] [Google Scholar]
  31. V. RUAS, 1992, Finite Element Methods for Three-Dimensional Incompressible Flow, in Finite Element in Fluids, Vol. 8, T. J. Chung ed., Hemisphere Publishing Corporation, Washington, Chapter X, pp. 211-235. [MR: 1188025] [Google Scholar]
  32. V. RUAS, 1992, A convergent three field quadrilateral finite element method for simulating viscoelastic flow on irregular meshes. Revue Européenne des Éléments finis, 4-1, pp.391-406. [Zbl: 0924.76060] [Google Scholar]
  33. V. RUAS, J. H. CARNEIRO DE ARAUJO, M. A. SILVA RAMOS, 1993, Approximation of the three-field Stokes System via optimized quadrilateral finite elements, Modélisation Mathématiques et Analyse Numérique, 27-1, pp. 107-127. [EuDML: 193691] [MR: 1204631] [Zbl: 0765.76053] [Google Scholar]
  34. V. RUAS, 1994, An optimal three-field finite element approximation of the Stokes System with continuous extra stresses, Japan Journal of Industrial and Applied Mathematics, 11-1, pp. 103-130. [MR: 1266524] [Zbl: 0797.76045] [Google Scholar]
  35. V. RUAS, Galerkin-least-squares finite element methods for the three-field Stokes System in three-dimension space, to appear. [Zbl: 0894.76040] [Google Scholar]
  36. D. SANDRI, 1993, Analyse d'une formulation à trois champs du problème de Stokes, Modélisation Mathématique et Analyse Numérique, 27-7, pp. 817-841. [EuDML: 193725] [MR: 1249454] [Zbl: 0791.76008] [Google Scholar]
  37. R. I. TANNER, 1985, Engineering Rheology, Claredon Press, Oxford. [MR: 830210] [Zbl: 1012.76002] [Google Scholar]
  38. O. C. ZIENKIEWICZ, 1971, The Finite Element Method in Engineering Science. McGraw Hill, Maidenhead. [MR: 315970] [Zbl: 0237.73071] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you