Free Access
Issue
ESAIM: M2AN
Volume 30, Number 5, 1996
Page(s) 575 - 605
DOI https://doi.org/10.1051/m2an/1996300505751
Published online 31 January 2017
  1. C. BARDOS and P. DEGOND, 1985, Global Existence for the Vlasov-Poisson Equation in 3 Space with Small Initial Data, Ann. Inst. Henri Poincaré, Analyse non linéaire, 2(2), pp.101-118. [EuDML: 78090] [MR: 794002] [Zbl: 0593.35076] [Google Scholar]
  2. J. BATT, H. BERESTYCKI, R. DEGOND and B. PERTHAME, 1988, Some Families of Solutions of the Vlasov-Poisson System, Arch. Rat. Mech. Anal, 104(1), pp. 79-103. [MR: 956568] [Zbl: 0703.35171] [Google Scholar]
  3. N. BENABDALLAH, 1994, The Child-Langmuir Regime for Electron Transport in a Plasma Including a Background Density of Positive Ions, M3 AS, 4(3), pp, 409-438. [MR: 1282242] [Google Scholar]
  4. N. BENABDALLAH, 1994, Étude de modèles asymptotiques de transport de particules chargées : Asymptotique de Child-Langmuir, PhD thesis, Centre de Mathématiques Appliquées, École Polytechnique, F-91128 Palaiseau Cedex. [Google Scholar]
  5. N. BENABDALLAH, P. DEGOND and C. SCHMEISER, 1994, On a Mathematical Model for Hot Carrier Injection in Semiconductors, M2 AS, 17, pp.1193-1212. [MR: 1313133] [Zbl: 0812.35137] [Google Scholar]
  6. P. DEGOND and P. A. RAVIART, 1991, An Asymptotic Analysis of the One Dimensional Vlasov-Poisson System : the Child-Langmuir Law, Asymptotic Analysis, 4, pp.187-214. [MR: 1115929] [Zbl: 0840.35082] [Google Scholar]
  7. P. DEGOND, S. JAFFARD, F. POUPAUD, P. A. RAVIART. The Child-Langmuir Asymptotics of the Vlasov-Poisson Equation for Cylindrically or Spherically Symmetrie Diodes, Part 1 : Statement of the Problem and Basic Estimates. Technical Report 264, CMAP, École Polytechnique, F-91128 Palaiseau Cedex, 1992. [Zbl: 0844.35086] [Google Scholar]
  8. R. T. GLASSEY and J. W. SCHAEFFER, 1985, On Symmetrie Solutions of the Relativistic Vlasov-Poisson System, Comm. Math. Phys., 101, pp. 459-473. [MR: 815195] [Zbl: 0582.35110] [Google Scholar]
  9. R. T. GLASSEY and J. W. SCHAEFFER, 1988, Global Existence for the Relativistic Vlasov-Maxwell System with Nearly Neutral Initial Data, Comm. Math. Phys., 119, pp. 353-384. [MR: 969207] [Zbl: 0673.35070] [Google Scholar]
  10. R. T. GLASSEY and W. A. STRAUSS, Singularity Formation in a Collisionless Plasma Could Occur Only at High Velocities, Arch. Rat. Mech. Anal, 92(1), pp. 59-90. [MR: 816621] [Zbl: 0595.35072] [Google Scholar]
  11. R.T. GLASSEY and W.A. STRAUSS, 1987, Absence of Shocks in an Initially Dilute Collisionless Plasma, Comm. Math. Phys., 113, pp. 191-208. [MR: 919231] [Zbl: 0646.35072] [Google Scholar]
  12. C. GREENGARD and P. A. RAVIART, 1990, A Boundary Value Probiem for the Stationary Vlasov-Poisson Equations : the Plane Diode, Comm. Pure. Appl. Math., 43, pp. 473-507. [MR: 1047333] [Zbl: 0721.35084] [Google Scholar]
  13. St. HUMPHRIES, 1990, Charged Particle Beams, John Wiley & Sons. [Google Scholar]
  14. L. D. LANDAU and E. M. LlFSCHITZ, 1987, Lehrbuch der theoretischen Physik. Teil 2. Klassische Feldtheorie, Akademie Verlag, Berlin, l0th edition. [MR: 893181] [Google Scholar]
  15. M. MARCUS and V. J. MIZEL, 1972, Absolute Continuity on Tracks and Mappings of Sobolev Spaces, Arch. Rat. Mech. Anal., pp. 294-320. [MR: 338765] [Zbl: 0236.46033] [Google Scholar]
  16. R.J. DI PERNA and P. L. LIONS, 1989, Global Weak Solutions of Vlasov-Maxwell Systems, Comm. Pure Appl. Math., 42, pp. 729-757. [MR: 1003433] [Zbl: 0698.35128] [Google Scholar]
  17. F. POUPAUD, 1992, Boundary Value Problems for the Stationary Vlasov-Maxwell systems, Forum Mathematicum, 4, pp. 499-527. [EuDML: 141689] [MR: 1176884] [Zbl: 0785.35020] [Google Scholar]
  18. W. P. ZlEMER, 1989, Weakly Differentiable Functions, Springer. [MR: 1014685] [Zbl: 0692.46022] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you