Free Access
Volume 30, Number 6, 1996
Page(s) 671 - 710
Published online 31 January 2017
  1. [B1] V. BARBU, 1993, Analysis and Control of Nonlinear Infinite Dimensional Systems. Academic Press, New York. [MR: 1195128] [Zbl: 0776.49005]
  2. [B2] V. BARBU, 1991, The approximate solvability ot the inverse one phase Stefan problem, Internat. Series Numer. Math., 99, pp. 33-43, Birkhauser Verlag, Basel. [MR: 1118851] [Zbl: 0733.65092]
  3. [BBC] J. V. BECK, B. BLACKWELL and C. CLAIR. 1985, Inverse Heat Conduction, Wiley-Interscience. [Zbl: 0633.73120]
  4. [BDZ] V. BARBU, G. DA PRATO, J. P. ZOLÉSIO, 1991, Feedback controllability of the free boundary of the one phase Stefan problem, Diff. Integral Equs., 4, pp. 225-239. [MR: 1081181] [Zbl: 0728.49013]
  5. [BK1] V. BARBU, K. KUNISCH, Identification of nonlinear elliptic equations, (to appear). [MR: 1365132] [Zbl: 0865.35139]
  6. [BK2] V. BARBU, K. KUNISCH, Identification of nonlinear parabolic equations (to appear). [MR: 1424370]
  7. [Br1] H. BRÉZIS, 1972, Problèmes unilatéraux, J. Math. Pures Appl., 51, pp. 1-64. [MR: 428137] [Zbl: 0237.35001]
  8. [Br2] H. BRÉZIS, 1983, Analyse fonctionnelle, Dunod, Paris. [MR: 697382] [Zbl: 0511.46001]
  9. [C] J. R. CANNON, 1984 The One Dimensional Heat Equation, Addison-Weseley Publ. Comp., Menlo Park. [MR: 747979] [Zbl: 0567.35001]
  10. [DZ] G. DA PRATO, J. P. ZOLÉSIO, 1988, An optimal control problem for a parabolic equation in noncylindrical domains, Systems & Control Letters, 11, pp 73-77. [MR: 949893] [Zbl: 0656.49001]
  11. [GLS] GRIPENBERG, S. LONDEN, and STAFFANS, 1990, Volterra Integral and Functional Equations, Cambridge University Press. [MR: 1050319] [Zbl: 0695.45002]
  12. [HN] K. H. HOFFMANN, M. NIEZGODKA, 1990, Control of evolutionary free boundary problems, in Fret Boundary Problems Theory and Applications, pp. 439-450, K. H. Hoffmann and J. Sprekels, eds., Pitman Research Notes in Mathematics 186, Longman, London. [MR: 1081737]
  13. [HS] K. H. HOFFMANN, J. SPREKELS, 1982, Real time control of the free boundary in a two phase Stefan problem, Numerical Functional Anal. Optimiz, 5, pp. 47-76. [MR: 703116] [Zbl: 0502.49005]
  14. [KMP] K. KUNISCH, K. MURPHY, and G. PEICHL, Estimation of the conductivity in the one-phase Stefan problem : Basic results, to appear in Bolletino Unione Mat. Italiana. [MR: 1328513] [Zbl: 0848.35140]
  15. [La] P. K. LAMM, Future-sequential regularization methods for ill-posed Volterra equations, to appear in J. Math. Anal. and Appl. [MR: 1354556] [Zbl: 0851.65094]
  16. [Li] J. L. LIONS, 1969, Quelques Méthodes de Résolutions de Problèmes aux Limites Nonlinéaires, Dunod, Paris. [Zbl: 0189.40603]
  17. [PW] H. PROTER, H. WEINBERGER, 1983, The Maximum Principle, Springer-Verlag, Berlin.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you