Free Access
Issue |
ESAIM: M2AN
Volume 30, Number 6, 1996
|
|
---|---|---|
Page(s) | 763 - 795 | |
DOI | https://doi.org/10.1051/m2an/1996300607631 | |
Published online | 31 January 2017 |
- E. M. AZOFF, 1987 Generalized energy moment equation in the relaxation time approximation, Solid Stat. Electr. 30, pp. 913-917. [Google Scholar]
- G. BACCARANI and M. R. WORDEMAN, 1982, An investigation of steady-state velocity overshoot effects in Si and GaAs devices, Solid-State Electron, 29, pp. 970-977. [Google Scholar]
- N. BEN ABDALLAH, Convergence of the Child Langmuir asymptotics of the Boltzmann equation of semiconductors, SIAM. J. on Math. Anal., to appear. [MR: 1373149] [Zbl: 0847.35009] [Google Scholar]
- N. BEN ABDALLAH and P. DEGOND, 1995, The Child-Langmuir for the Boltzmann equation ot semiconductors, SIAM. J. Math. Anal. 26, pp. 364 398. [MR: 1320225] [Zbl: 0828.35131] [Google Scholar]
- N. BEN ABDALLAH, P. DEGOND and A. YAMNAHAKKI, 1996. The Child-Langmir low as a model for election transport in semiconductors , Solid State electronics, 39, pp. 737-744. [Google Scholar]
- BIRDSALL and LANGDON, 1985, Plasma Physics via Computer Simulations, McGrawHill, New-York. [Google Scholar]
- J. U. BRACKBILL and D. W. FORSLUND, 1982, J. Comput. Phys., 46, p. 271. [MR: 672909] [Zbl: 0489.76127] [Google Scholar]
- A. BRINCER and G. SCHÖN, 1988, Extended moment equations for electron transport in semiconducting submicron structures. J. Appl. Phys., 61, pp. 2445-2455. [Google Scholar]
- G. H. COTTET, 1987, Analyse numérique des méthodes particulaires pour certains problèmes non linéaires, Thèse d'état, Université Paris 6. [Google Scholar]
- P. DEGOND, 1994, The Child-Langmuir law in the kinetic theory of charges particles Part I electron flows in vacuum in Advances in Kinetic Theory and Computing B. Perthame (ed.), World Scientific, Singapore. [MR: 1323180] [Zbl: 0863.76091] [Google Scholar]
- P. DEGOND, F. DELAURENS and F. J. MUSTIELES, 1991, in Computer Methods in Applied Sciences and Engineering, R. Glowinski and A. Lichnewsky (eds), SIAM, Philadelphia. [Google Scholar]
- P. DEGOND and F. J. MUSTIELES, 1991, Solid State Electron, 34, pp. 1335-1345. [Google Scholar]
- P. DEGOND, B. NICLOT and F. POUPAUD, 1988, J. Comput. Phys., 78,pp. 313. [Zbl: 0662.65126] [Google Scholar]
- P. DEGOND and P.-A. RAVIART, 1991, An asymptotic analysis of the one-dimensional Vlasov-Poisson system the Child-Langmuir law, Asymptotic Analysis 4, pp. 187-214. [MR: 1115929] [Zbl: 0840.35082] [Google Scholar]
- P. DEGOND, S. JAIFARD, F. POUPAUD and P.-A. RAVIART, 1996, The Child-Langmuir asymptotics of the Vlasov-Poisson equation for cylindrically or Spherically symmetric diodes, Part I statement of the problem and basic estimates, Part II Analysis of the reduced problem and determination of the Child Langmuir current. Math. Meth. Appl. Sci. 19, pp. 287-340. [MR: 1375208] [Zbl: 0844.35087] [Google Scholar]
- P DEGOND, C. SCHMEISER and A. YAMNAHAKKI, A mathematical analysis of a multidimensional Shottky diode, Asymptotic Analysis to appear. [Zbl: 0866.35119] [Google Scholar]
- F. DELAURENS and F. J. MUSTIELES 1992 A deterministic particle method for solving kinetic transport equations the semiconductor Boltzmann equation case, SIAM. J. Appl. Math. 52, pp. 973-988. [MR: 1174041] [Zbl: 0755.65132] [Google Scholar]
- C. L. GARDNER, J. W. JEROME, D. J. ROSE 1989, Numerical methods for the hydrodynamic device model: Subsonic flow, ILEE Trans. Comp. Design. 8, pp. 501-507. [Google Scholar]
- C. GREENGARD and P. A. RAVIART 1993 A Boundary value problem for the stationary Vlasov-Poisson equations the plane diode, Comm. Pure. Appl. Math. 43, pp. 473-507. [MR: 1047333] [Zbl: 0721.35084] [Google Scholar]
- F. GUYOT-DELAURENS, 1990, Ph. D. thesis, Ecole Polytechnique, Palaiseau. [Google Scholar]
- P. HESTO, 1984, Simulation Monte-Carlo du transport non stationnaire dans les dispositifs submicroniques importance du phénomène balistique dans GaAs à 77 K, Ph-D thesis Paris-sud, Orsay. [Google Scholar]
- R. W. HOCKNEY and J. W. EASTWOOD 1981, Computer Simulation using Particles, McGrawHill, New York. [Zbl: 0662.76002] [Google Scholar]
- J. W. JEROME and CHI-WANG SHU, Energy Models tor One-Carrier Transport in Semiconductor Devices, Preprint. [Zbl: 0946.76516] [Google Scholar]
- S. MAS-GALUC, 1987, Transp. Theory Stat. Physics, 16, pp. 855. [Zbl: 0658.76075] [Google Scholar]
- P. A. MARKOWICH, 1986 The stationary semiconductor device equations, Springer, Wien, New York. [MR: 821965] [Google Scholar]
- P. A. MARKOWICH, 1990, C. Ringhofer and C. Schmeiser, Semiconductor equations, Springer, Wien, New York. [MR: 1063852] [Zbl: 0765.35001] [Google Scholar]
- H. NEUZERT and J. WICK, 1980, in Mathematical Methods of Plasma Physics, R. Kress and J. Wick (eds), Verlag Peter D. Lang, Frankfurt. [MR: 713641] [Zbl: 0508.00012] [Google Scholar]
- F. POUPAUD, 1991, Derivation of a hydrodynamic Systems hierarchy from the Boltzmann equation, Appl. Math. Letters 4, pp. 75-79. [MR: 1088041] [Zbl: 0733.35102] [Google Scholar]
- F. POUPAUD 1992, Boundary value problems for the stationary Vlasov-Maxwell System, Forum Math. 4, pp. 499-527. [EuDML: 141689] [MR: 1176884] [Zbl: 0785.35020] [Google Scholar]
- A. YAMNAHAKKI 1995, Second order boundary conditions for Drilt Diffusion equations of semi conductor , Math. Mod. Meth. Appl. Sci. 5, pp. 429-455. [MR: 1335827] [Zbl: 0830.65117] [Google Scholar]
- P. A. RAVIART, 1985 An Analysis of particle methods in Fluid Dynamics, F. Brezzi ed., L. N. in Math. 1127, Springer-Verlag, Berlin. [MR: 802214] [Zbl: 0598.76003] [Google Scholar]
- L. REGGIANI (ed), 1985, Hot electron transport in semiconductors, Springer, Berlin. [Google Scholar]
- S. SELBERHERR, 1985, Analysis and simulation of semiconductor devices, Springer Berlin, New York. [Google Scholar]
- S. M. SZE, 1981, Physics of semiconductor devices, Wiley, New York, 2nd edition. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.