Free Access
Issue
ESAIM: M2AN
Volume 30, Number 6, 1996
Page(s) 763 - 795
DOI https://doi.org/10.1051/m2an/1996300607631
Published online 31 January 2017
  1. E. M. AZOFF, 1987 Generalized energy moment equation in the relaxation time approximation, Solid Stat. Electr. 30, pp. 913-917.
  2. G. BACCARANI and M. R. WORDEMAN, 1982, An investigation of steady-state velocity overshoot effects in Si and GaAs devices, Solid-State Electron, 29, pp. 970-977.
  3. N. BEN ABDALLAH, Convergence of the Child Langmuir asymptotics of the Boltzmann equation of semiconductors, SIAM. J. on Math. Anal., to appear. [MR: 1373149] [Zbl: 0847.35009]
  4. N. BEN ABDALLAH and P. DEGOND, 1995, The Child-Langmuir for the Boltzmann equation ot semiconductors, SIAM. J. Math. Anal. 26, pp. 364 398. [MR: 1320225] [Zbl: 0828.35131]
  5. N. BEN ABDALLAH, P. DEGOND and A. YAMNAHAKKI, 1996. The Child-Langmir low as a model for election transport in semiconductors , Solid State electronics, 39, pp. 737-744.
  6. BIRDSALL and LANGDON, 1985, Plasma Physics via Computer Simulations, McGrawHill, New-York.
  7. J. U. BRACKBILL and D. W. FORSLUND, 1982, J. Comput. Phys., 46, p. 271. [MR: 672909] [Zbl: 0489.76127]
  8. A. BRINCER and G. SCHÖN, 1988, Extended moment equations for electron transport in semiconducting submicron structures. J. Appl. Phys., 61, pp. 2445-2455.
  9. G. H. COTTET, 1987, Analyse numérique des méthodes particulaires pour certains problèmes non linéaires, Thèse d'état, Université Paris 6.
  10. P. DEGOND, 1994, The Child-Langmuir law in the kinetic theory of charges particles Part I electron flows in vacuum in Advances in Kinetic Theory and Computing B. Perthame (ed.), World Scientific, Singapore. [MR: 1323180] [Zbl: 0863.76091]
  11. P. DEGOND, F. DELAURENS and F. J. MUSTIELES, 1991, in Computer Methods in Applied Sciences and Engineering, R. Glowinski and A. Lichnewsky (eds), SIAM, Philadelphia.
  12. P. DEGOND and F. J. MUSTIELES, 1991, Solid State Electron, 34, pp. 1335-1345.
  13. P. DEGOND, B. NICLOT and F. POUPAUD, 1988, J. Comput. Phys., 78,pp. 313. [Zbl: 0662.65126]
  14. P. DEGOND and P.-A. RAVIART, 1991, An asymptotic analysis of the one-dimensional Vlasov-Poisson system the Child-Langmuir law, Asymptotic Analysis 4, pp. 187-214. [MR: 1115929] [Zbl: 0840.35082]
  15. P. DEGOND, S. JAIFARD, F. POUPAUD and P.-A. RAVIART, 1996, The Child-Langmuir asymptotics of the Vlasov-Poisson equation for cylindrically or Spherically symmetric diodes, Part I statement of the problem and basic estimates, Part II Analysis of the reduced problem and determination of the Child Langmuir current. Math. Meth. Appl. Sci. 19, pp. 287-340. [MR: 1375208] [Zbl: 0844.35087]
  16. P DEGOND, C. SCHMEISER and A. YAMNAHAKKI, A mathematical analysis of a multidimensional Shottky diode, Asymptotic Analysis to appear. [Zbl: 0866.35119]
  17. F. DELAURENS and F. J. MUSTIELES 1992 A deterministic particle method for solving kinetic transport equations the semiconductor Boltzmann equation case, SIAM. J. Appl. Math. 52, pp. 973-988. [MR: 1174041] [Zbl: 0755.65132]
  18. C. L. GARDNER, J. W. JEROME, D. J. ROSE 1989, Numerical methods for the hydrodynamic device model: Subsonic flow, ILEE Trans. Comp. Design. 8, pp. 501-507.
  19. C. GREENGARD and P. A. RAVIART 1993 A Boundary value problem for the stationary Vlasov-Poisson equations the plane diode, Comm. Pure. Appl. Math. 43, pp. 473-507. [MR: 1047333] [Zbl: 0721.35084]
  20. F. GUYOT-DELAURENS, 1990, Ph. D. thesis, Ecole Polytechnique, Palaiseau.
  21. P. HESTO, 1984, Simulation Monte-Carlo du transport non stationnaire dans les dispositifs submicroniques importance du phénomène balistique dans GaAs à 77 K, Ph-D thesis Paris-sud, Orsay.
  22. R. W. HOCKNEY and J. W. EASTWOOD 1981, Computer Simulation using Particles, McGrawHill, New York. [Zbl: 0662.76002]
  23. J. W. JEROME and CHI-WANG SHU, Energy Models tor One-Carrier Transport in Semiconductor Devices, Preprint. [Zbl: 0946.76516]
  24. S. MAS-GALUC, 1987, Transp. Theory Stat. Physics, 16, pp. 855. [Zbl: 0658.76075]
  25. P. A. MARKOWICH, 1986 The stationary semiconductor device equations, Springer, Wien, New York. [MR: 821965]
  26. P. A. MARKOWICH, 1990, C. Ringhofer and C. Schmeiser, Semiconductor equations, Springer, Wien, New York. [MR: 1063852] [Zbl: 0765.35001]
  27. H. NEUZERT and J. WICK, 1980, in Mathematical Methods of Plasma Physics, R. Kress and J. Wick (eds), Verlag Peter D. Lang, Frankfurt. [MR: 713641] [Zbl: 0508.00012]
  28. F. POUPAUD, 1991, Derivation of a hydrodynamic Systems hierarchy from the Boltzmann equation, Appl. Math. Letters 4, pp. 75-79. [MR: 1088041] [Zbl: 0733.35102]
  29. F. POUPAUD 1992, Boundary value problems for the stationary Vlasov-Maxwell System, Forum Math. 4, pp. 499-527. [EuDML: 141689] [MR: 1176884] [Zbl: 0785.35020]
  30. A. YAMNAHAKKI 1995, Second order boundary conditions for Drilt Diffusion equations of semi conductor , Math. Mod. Meth. Appl. Sci. 5, pp. 429-455. [MR: 1335827] [Zbl: 0830.65117]
  31. P. A. RAVIART, 1985 An Analysis of particle methods in Fluid Dynamics, F. Brezzi ed., L. N. in Math. 1127, Springer-Verlag, Berlin. [MR: 802214] [Zbl: 0598.76003]
  32. L. REGGIANI (ed), 1985, Hot electron transport in semiconductors, Springer, Berlin.
  33. S. SELBERHERR, 1985, Analysis and simulation of semiconductor devices, Springer Berlin, New York.
  34. S. M. SZE, 1981, Physics of semiconductor devices, Wiley, New York, 2nd edition.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you