Free Access
Volume 31, Number 2, 1997
Page(s) 289 - 302
Published online 31 January 2017
  1. Y. ACHDOU and O. PIRONNEAU, 1995, A fast solver for Navier-Stokes equations in the laminar regime using mortar finite element and boundary element methods SIAM J. Num. Anal., vol. 32,pp. 985-1016. [MR: 1342280] [Zbl: 0833.76032]
  2. G. ANAGNOUSTOU, 1991, Non conforming sliding spectral element methods for the unsteady incompressible Navier-Stokes equations, PhD Thesis, Massachusetts Institute of Technology, Cambridge, Ma.
  3. G. ANAGNOUSTOU, Y. MADAY, C. MAVRIPLIS and A. T. PATERA, 1990, On the mortar element method : generalization and implementation, Proceedings of the third International Conference on Domain Decomposition Methods for P. D. E. eds T. F. Chan, R. Glowinski, J. Pénaux and O. B. Widlund, SIAM, Philadelphia, pp. 157-173. [MR: 1064342] [Zbl: 0704.65077]
  4. F. BEN BELGACEM, 1993, Discrétisations 3D nonconformes par la méthode de décomposition de domaines des éléments avec joints : Analyse mathématique et mise en oeuvre pour le problème de Poisson, PhD Thesis, Université Pierre et Marie Curie, Paris, France, Note technique EDF, ref. H172/93017.
  5. F. BEN BELGACEM, 1994, The mortar finite element method with Lagrange multipliers, (Rapport interne MIP, Université Paul Sabatier) (to appear). [MR: 1730018] [Zbl: 0944.65114]
  6. F. BEN BELGACEM and Y. MADAY, 1994, Non conforming spectral element methodology tuned to parallel implementation, Comp. Meth. in Applied Mech. Eng, vol. 116, pp. 59-67. [MR: 1286513] [Zbl: 0841.65096]
  7. F. BEN BELGACEM and Y. MADAY, 1993, Non-conforming spectral method for second order elliptic problems in 3D, Est-West J. of Num. Math., vol. 1-4, pp. 235-252. [MR: 1318804] [Zbl: 0835.65129]
  8. C. BERNARDI, N. DEBIT and Y. MADAY, 1990, Coupling spectral and finite element methods for the Laplace equation, Math. Comput., vol. 54-189, pp. 21-41. [MR: 995205] [Zbl: 0685.65098]
  9. C. BERNARDI, Y. MADAY and A. T. PATERA, 1994, A new nonconforming approach to domain decomposition : the mortar element method, Nonlinear Partial Differential Equations and Their Applications, eds H. Brezis and J. L. Lions Pitman, New York, pp. 13-51. [MR: 1268898] [Zbl: 0797.65094]
  10. C. BERNARDI, Y. MADAY and A. T. PATERA, 1993, Domain decomposition by the mortar element method, Asymptotic and numerical methods for partial differential equations with critical parameters, eds H. Kaper and M. Garbey, Nato ASI series. [MR: 1222428] [Zbl: 0799.65124]
  11. P. E. BJORSTAD and O. B. WIDLUND, 1986, Iterative methods for the solution of elliptic problems in regions partitionned in substructures, SIAM J. Num. Anal., vol. 23, pp. 1097-1120. [MR: 865945] [Zbl: 0615.65113]
  12. N. DÉBIT, 1992, La méthode des éléments avec joints dans le cas du couplage des méthodes spectrales et des éléments finis, PhD Thesis, Université Pierre et Marie Curie, Paris, France.
  13. C. FARHAT and F. X. ROUX, A method of finite element tearing and interconnecting and its parallel solution algorithm, Int. J. Num. Meth. Engr., vol. 32, pp. 1205-1227. [Zbl: 0758.65075]
  14. P. LE TALLEC and T. SASSI, 1995, " Domain Decomposition with Nonmatching Grids : Augmented Lagrangian Approach", Math of Comp., vol. 64, pp. 1367-1396. [MR: 1308457] [Zbl: 0849.65087]
  15. P. LE TALLEC and S. RODRIGUES, 1993, Domain decomposition method with nonmatching grids applied to fluid dynamics, Finite element in fluids, new trends and applications, eds K. Morgan, E. Onate, J. Periaux, J. Peraire and O. C. Zienkiewics, Pineridge Press, Barcelone, pp. 418-426. [MR: 1292054] [Zbl: 0874.76040]
  16. C. MAVRIPLIS, 1989, Nonconforming discretization and a posteriori error estimations for adaptive spectral element techniques, PhD Thesis, Massachusetts Institute of Technology, Cambridge, Ma.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you