Free Access
Volume 31, Number 3, 1997
Page(s) 303 - 326
Published online 31 January 2017
  1. I. BABUŠKA, 1971, Error bounds for the finite element method, Numer. Math., 16,322-333. [EuDML: 132037] [MR: 288971] [Zbl: 0214.42001] [Google Scholar]
  2. F. BREZZI, 1974, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO 8-R.2, 129-151. [EuDML: 193255] [MR: 365287] [Zbl: 0338.90047] [Google Scholar]
  3. M. R. DORR, 1984, The approximation theory for the p-version of the finite element method, SIAM J. Numer. Anal., 21, 1180-1207. [MR: 765514] [Zbl: 0572.65074] [Google Scholar]
  4. J. Jr. DOUGLAS and J. E. ROBERTS, 1982, Mixed finite element methods for second order elliptic problems, Mat. Applic. Comp., 1, 91-103. [MR: 667620] [Zbl: 0482.65057] [Google Scholar]
  5. J. Jr. DOUGLAS and J. E. ROBERTS, 1985, Global estimates for mixed methods for second order elliptic equations, Math. Comp., 44, 39-52. [MR: 771029] [Zbl: 0624.65109] [Google Scholar]
  6. S. M. F. GARCIA, 1994, Improved Error Estimates for Nonlinear Parabolic Equations - Continuous Time Case, Numer. Methods in PDEs, 10, 129-147. [MR: 1259214] [Zbl: 0792.65068] [Google Scholar]
  7. S. Jensen, 1992, p-version of the mixed finite element method for Stokes-like problems, Comp. Meth. Appl. Mech. Eng., 101, 27-41. [MR: 1195577] [Zbl: 0778.76052] [Google Scholar]
  8. S. JENSEN and M. VOGELIUS, 1990, Divergence stability in connection with the p version of the finite element method, RAIRO, Modélisation Math. Anal. Numér., 24-6, 737-764. [EuDML: 193614] [MR: 1080717] [Zbl: 0717.65085] [Google Scholar]
  9. C. JOHNSON, Numerical solutions of partial differential equations by the finite element methods, Cambridge University Press, 1987. [MR: 925005] [Google Scholar]
  10. C. JOHNSON and V. THOMÉE, 1981, Error estimates for some mixed finite element methods for parabolic type problems, RAIRO Anal. Numér., 15, 41-78. [EuDML: 193370] [MR: 610597] [Zbl: 0476.65074] [Google Scholar]
  11. F. A. MlLNER and M. SURI, 1992, Mixed Finite Element Methods for Quasilinear Second Order Elliptic Problems : the p-version. RAIRO, Modélisation Math. Anal. Numér., 24-7, 913-931. [EuDML: 193690] [MR: 1199319] [Zbl: 0783.65076] [Google Scholar]
  12. A. QUARTERONI, 1984, Some results of Bernstein and Jackson type for polynomial approximation in Lp spaces, Jap. J. Appl. Math., 1, 173-181. [MR: 839312] [Zbl: 0568.41006] [Google Scholar]
  13. P.-A. RAVIART and J. M. THOMAS, 1977, A Mixed Finite Element Method for 2-nd Order Elliptic Equations, in Mathematical Aspects of Finite Element Methods, Lecture Notes in Mathematics, 606, ed. I. Galligani and E. Magenes, Springer, 292-315. [MR: 483555] [Zbl: 0362.65089] [Google Scholar]
  14. G. SANSONE, Orthogonal Functions, Dover, Mineola, NY 1991 (orig. Interscience, 1959). [MR: 1118381] [Zbl: 0084.06106] [Google Scholar]
  15. E. M. STEIN, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series vol. 30, Princeton University Press, NJ, 1970. [MR: 290095] [Zbl: 0207.13501] [Google Scholar]
  16. M. SURI, 1990, On the stability and convergence of higher order mixed finite element methods for second order elliptic problems, Math. Comp., 54, 1-19. [MR: 990603] [Zbl: 0687.65101] [Google Scholar]
  17. G. SZEGÖ, Orthogonal Polynomials, AMS Colloq. Publ. 23, 1933. [Zbl: 0023.21505] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you