Free Access
Issue
ESAIM: M2AN
Volume 31, Number 3, 1997
Page(s) 409 - 434
DOI https://doi.org/10.1051/m2an/1997310304091
Published online 31 January 2017
  1. J A ALVAREZ-DIOS, J M VIAÑO, 1995, Une théorie asymptotique de flexion-extension pour les poutres élastiques faiblement courbées, C.R. Acad. Sci. Paris, 321, Série I, 1395-1400. [MR: 1363587] [Zbl: 0839.73024] [Google Scholar]
  2. C. AMROUCHE, V. GIRAULT, 1994, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czech. Math. J., 44, 109-140. [EuDML: 31399] [MR: 1257940] [Zbl: 0823.35140] [Google Scholar]
  3. A. BERMUDEZ, J. M. VIAÑO, 1984, Une justification des équations de la thermoélasticité des poutres à section variable par des méthodes asymptotiques, RAIRO Analyse Numérique, 18, 347-376. [EuDML: 193437] [MR: 761673] [Zbl: 0572.73053] [Google Scholar]
  4. W. BORCHERS, H. SOHR, 1990, On the equations rot v = g and div u = f with zero boundary conditions, Hokkaido Math. J., 19, 67-87. [MR: 1039466] [Zbl: 0719.35014] [Google Scholar]
  5. S. BUSSE, 1997, Thèse, Université Pierre et Marie Curie, Paris. [Google Scholar]
  6. S. BUSSE, P. G. CIARLET, B. MIARA, 1996, Coques « faiblement courbées » en coordonnées curvilignes, C. R. Acad. Sci. Paris, Sér. I, à paraître. [MR: 1396647] [Zbl: 0862.73036] [Google Scholar]
  7. D. CAILLERIE, 1980, The effect of a thin inclusion of high rigidity in an elastic body, Math. Methods Appl. Sci., 2, 251 270. [MR: 581205] [Zbl: 0446.73014] [Google Scholar]
  8. D. CAILLERIE, E. SANCHEZ-PALENCIA, 1995, Elastic thin shells : asymptotic theory in the anisotropic and heterogeneous cases, Math. Models Methods Appl. Sci., 5, 473-496. [MR: 1335829] [Zbl: 0844.73043] [Google Scholar]
  9. P. G. CIARLET, 1988, Mathematical Elasticity, Vol. I : Three-Dimensional Elasticity, North-Holland. [MR: 936420] [Zbl: 0648.73014] [Google Scholar]
  10. P. G. CIARLET, 1990, Plates and Junctions in Elastic Multi-Structures : An Asymptotic Analysis, Masson, Paris. [MR: 1071376] [Zbl: 0706.73046] [Google Scholar]
  11. P. G. CIARLET, 1997, Mathematical Elasticity, Vol. Il : Theory of Plates, North-Holland. [MR: 1477663] [Google Scholar]
  12. P. G. CIARLET, 1998, Mathematical Elasticity, Vol III : Theory of Shells, North-Holland, à paraître. [MR: 1757535] [Zbl: 0953.74004] [Google Scholar]
  13. P. G. CIARLET, P. DESTUYNDER, 1979, A justification of the two-dimensional plate model, J. Mécanique, 18, 315-344. [MR: 533827] [Zbl: 0415.73072] [Google Scholar]
  14. P. G. CIARLET, S. KESAVAN, 1981, Two-dimensional approximation of three-dimensional eigenvalue problems in plate theory. Comp. Methods Appl. Mech. Engrg., 26, 149-172. [MR: 626720] [Zbl: 0489.73057] [Google Scholar]
  15. P. G. CIARLET, V. LODS, 1996a, Asymptotic analysis of linearly elastic shells. I : Justification of membrane shell equations, Arch. Rational Mech. Anal., à paraître. [MR: 1423005] [Zbl: 0887.73038] [Google Scholar]
  16. P. G. CIARLET, V. LODS, 1996b, Asymptotic analysis of linearly elastic shells :« Generalized membrane shells », à paraître. [Zbl: 0891.73044] [Google Scholar]
  17. P. G. CIARLET, V. LODS, & MIARA, 1996, Asymptotic analysis of linearly elastic shells. II : Justification of flexural shell equations, Arch. Rational Mech. Anal., à paraître. [Zbl: 0887.73039] [Google Scholar]
  18. P. G. CIARLET, B. MIARA, 1992, Justification of the two-dimensional equations of a linearly elastic shallow shell, Comm. Pure Appl. Math., 45, 327-360. [MR: 1151270] [Zbl: 0769.73050] [Google Scholar]
  19. P. G. CIARLET, J. C PAUMIER, 1986, A justification of the Marguerre-von Kármán equations, Computational Mechanics, 1, 177-202. [Zbl: 0633.73069] [Google Scholar]
  20. P. DESTUYNDER, 1980, Sur une Justification des Modèles de Plaques et de Coques par les Méthodes Asymptotiques, Thèse d'Etat, Université Pierre et Marie Curie, Paris. [Google Scholar]
  21. P. DESTUYNDER 1981, Comparaison entre les modèles tri-dimensionnels et bi-dimensionnels de plaques en élasticité, RAIRO Analyse Numérique, 15, 331-369. [EuDML: 193386] [MR: 642497] [Zbl: 0479.73042] [Google Scholar]
  22. P. DESTUYNDER, 1985, A classification of thin shell theories, Acta Applicandae Mathematicae, 4, 15-63. [MR: 791261] [Zbl: 0531.73044] [Google Scholar]
  23. M. DIKMEN, 1982, Theory of Thin Elastic Shells, Pitman, Boston. [MR: 665102] [Zbl: 0478.73043] [Google Scholar]
  24. G. DUVAUT, J. L. LIONS, 1972, Les Inéquations en Mécanique et en Physique, Dunod, Paris. [MR: 464857] [Zbl: 0298.73001] [Google Scholar]
  25. G. GEYMONAT, F. KRASUCKI, J. J. MARIGO, 1987, Stress distribution in anisotropic elastic composite beams, in Applications of Multiple Scalings in Mechanics (P. G. Ciarlet & E. Sanchez-Palencia, Editors), pp. 18-133, Masson, Paris. [MR: 901992] [Zbl: 0645.73029] [Google Scholar]
  26. A. E. GREEN, W. ZERNA, 1968, Theoretical Elasticity, Second Edition, Oxford University Press. [MR: 245245] [Zbl: 0155.51801] [Google Scholar]
  27. R. V. KOHN, M. VOGELIUS, 1985, A new model for thin plates with rapidly varying thickness. II : A convergence proof, Quart. Appl. Math., 43, 1-21. [MR: 782253] [Zbl: 0565.73046] [Google Scholar]
  28. W. T. KOITER, 1970, On the foundations of the linear theory of thin elastic shells, Proc. Kon. Ned. Akad. Wetensch., B73, 169-195. [Zbl: 0213.27002] [Google Scholar]
  29. H. LE DRET, 1991, Problèmes Variationnels dans les Multi-Domaines : Modélisation des Jonctions et Applications, Masson, Paris. [MR: 1130395] [Zbl: 0744.73027] [Google Scholar]
  30. H. LE DRET, 1995, Convergence of displacements and stresses in linearly elastic slender rods as the thickness goes to zero, Asymptotic Anal., 10, 367-402. [MR: 1338254] [Zbl: 0846.73025] [Google Scholar]
  31. J. L. LIONS, 1973, Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal, Lectures Notes in Mathematics, Vol. 323, Springer-Verlag. [MR: 600331] [Zbl: 0268.49001] [Google Scholar]
  32. E. MAGENES, G. STAMPACCHIA, 1958, I problemi al contorno per le equazioni differenziali di tipo ellitico, Ann. Scuola Norm. Sup. Pisa, 12, 247-358. [EuDML: 83216] [MR: 123818] [Zbl: 0082.09601] [Google Scholar]
  33. B. MIARA, E. SANCHEZ-PALENCIA, 1996, Asymptotic analysis of linearly elastic shells, Asymptotic Anal., 12, 41-54. [MR: 1373481] [Zbl: 0846.73038] [Google Scholar]
  34. V. V. NOVOZHILOV, 1959, Thin Shell Theory, Walters Noordhoff Publishers. [MR: 208886] [Zbl: 0135.43602] [Google Scholar]
  35. A. RAOULT, 1985, Construction d'un modèle d'évolution de plaques avec termes d'inertie de rotation, Annali di Matematica Pura ed Applicata, 139, 361-400. [MR: 798182] [Zbl: 0596.73033] [Google Scholar]
  36. A. RAOULT, 1988, Analyse Mathématique de Quelques Modèles de Plaques et de Poutres Élastiques ou Élasto-Plastiques, Thèse d'Etat, Université Pierre et Marie Curie, Paris. [Google Scholar]
  37. E. SANCHEZ-PALENCIA, 1990, Passages à la limite de l'élasticité tri-dimensionnelle à la théorie asymptotique des coques minces, C.R. Acad. Sci. Paris, Sér. II, 311, 909-916. [MR: 1088549] [Zbl: 0701.73080] [Google Scholar]
  38. L. TRABUCHO, J. M. VIAÑO, 1996, Mathematical modelling of rods, in Handbook of Numerical Analysis, Vol. IV (P. G. Ciarlet & J. L. Lions, Editors), pp. 487-974,North-Holland. [MR: 1422507] [Zbl: 0873.73041] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you