Free Access
Issue
ESAIM: M2AN
Volume 31, Number 3, 1997
Page(s) 409 - 434
DOI https://doi.org/10.1051/m2an/1997310304091
Published online 31 January 2017
  1. J A ALVAREZ-DIOS, J M VIAÑO, 1995, Une théorie asymptotique de flexion-extension pour les poutres élastiques faiblement courbées, C.R. Acad. Sci. Paris, 321, Série I, 1395-1400. [MR: 1363587] [Zbl: 0839.73024]
  2. C. AMROUCHE, V. GIRAULT, 1994, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czech. Math. J., 44, 109-140. [EuDML: 31399] [MR: 1257940] [Zbl: 0823.35140]
  3. A. BERMUDEZ, J. M. VIAÑO, 1984, Une justification des équations de la thermoélasticité des poutres à section variable par des méthodes asymptotiques, RAIRO Analyse Numérique, 18, 347-376. [EuDML: 193437] [MR: 761673] [Zbl: 0572.73053]
  4. W. BORCHERS, H. SOHR, 1990, On the equations rot v = g and div u = f with zero boundary conditions, Hokkaido Math. J., 19, 67-87. [MR: 1039466] [Zbl: 0719.35014]
  5. S. BUSSE, 1997, Thèse, Université Pierre et Marie Curie, Paris.
  6. S. BUSSE, P. G. CIARLET, B. MIARA, 1996, Coques « faiblement courbées » en coordonnées curvilignes, C. R. Acad. Sci. Paris, Sér. I, à paraître. [MR: 1396647] [Zbl: 0862.73036]
  7. D. CAILLERIE, 1980, The effect of a thin inclusion of high rigidity in an elastic body, Math. Methods Appl. Sci., 2, 251 270. [MR: 581205] [Zbl: 0446.73014]
  8. D. CAILLERIE, E. SANCHEZ-PALENCIA, 1995, Elastic thin shells : asymptotic theory in the anisotropic and heterogeneous cases, Math. Models Methods Appl. Sci., 5, 473-496. [MR: 1335829] [Zbl: 0844.73043]
  9. P. G. CIARLET, 1988, Mathematical Elasticity, Vol. I : Three-Dimensional Elasticity, North-Holland. [MR: 936420] [Zbl: 0648.73014]
  10. P. G. CIARLET, 1990, Plates and Junctions in Elastic Multi-Structures : An Asymptotic Analysis, Masson, Paris. [MR: 1071376] [Zbl: 0706.73046]
  11. P. G. CIARLET, 1997, Mathematical Elasticity, Vol. Il : Theory of Plates, North-Holland. [MR: 1477663]
  12. P. G. CIARLET, 1998, Mathematical Elasticity, Vol III : Theory of Shells, North-Holland, à paraître. [MR: 1757535] [Zbl: 0953.74004]
  13. P. G. CIARLET, P. DESTUYNDER, 1979, A justification of the two-dimensional plate model, J. Mécanique, 18, 315-344. [MR: 533827] [Zbl: 0415.73072]
  14. P. G. CIARLET, S. KESAVAN, 1981, Two-dimensional approximation of three-dimensional eigenvalue problems in plate theory. Comp. Methods Appl. Mech. Engrg., 26, 149-172. [MR: 626720] [Zbl: 0489.73057]
  15. P. G. CIARLET, V. LODS, 1996a, Asymptotic analysis of linearly elastic shells. I : Justification of membrane shell equations, Arch. Rational Mech. Anal., à paraître. [MR: 1423005] [Zbl: 0887.73038]
  16. P. G. CIARLET, V. LODS, 1996b, Asymptotic analysis of linearly elastic shells :« Generalized membrane shells », à paraître. [Zbl: 0891.73044]
  17. P. G. CIARLET, V. LODS, & MIARA, 1996, Asymptotic analysis of linearly elastic shells. II : Justification of flexural shell equations, Arch. Rational Mech. Anal., à paraître. [Zbl: 0887.73039]
  18. P. G. CIARLET, B. MIARA, 1992, Justification of the two-dimensional equations of a linearly elastic shallow shell, Comm. Pure Appl. Math., 45, 327-360. [MR: 1151270] [Zbl: 0769.73050]
  19. P. G. CIARLET, J. C PAUMIER, 1986, A justification of the Marguerre-von Kármán equations, Computational Mechanics, 1, 177-202. [Zbl: 0633.73069]
  20. P. DESTUYNDER, 1980, Sur une Justification des Modèles de Plaques et de Coques par les Méthodes Asymptotiques, Thèse d'Etat, Université Pierre et Marie Curie, Paris.
  21. P. DESTUYNDER 1981, Comparaison entre les modèles tri-dimensionnels et bi-dimensionnels de plaques en élasticité, RAIRO Analyse Numérique, 15, 331-369. [EuDML: 193386] [MR: 642497] [Zbl: 0479.73042]
  22. P. DESTUYNDER, 1985, A classification of thin shell theories, Acta Applicandae Mathematicae, 4, 15-63. [MR: 791261] [Zbl: 0531.73044]
  23. M. DIKMEN, 1982, Theory of Thin Elastic Shells, Pitman, Boston. [MR: 665102] [Zbl: 0478.73043]
  24. G. DUVAUT, J. L. LIONS, 1972, Les Inéquations en Mécanique et en Physique, Dunod, Paris. [MR: 464857] [Zbl: 0298.73001]
  25. G. GEYMONAT, F. KRASUCKI, J. J. MARIGO, 1987, Stress distribution in anisotropic elastic composite beams, in Applications of Multiple Scalings in Mechanics (P. G. Ciarlet & E. Sanchez-Palencia, Editors), pp. 18-133, Masson, Paris. [MR: 901992] [Zbl: 0645.73029]
  26. A. E. GREEN, W. ZERNA, 1968, Theoretical Elasticity, Second Edition, Oxford University Press. [MR: 245245] [Zbl: 0155.51801]
  27. R. V. KOHN, M. VOGELIUS, 1985, A new model for thin plates with rapidly varying thickness. II : A convergence proof, Quart. Appl. Math., 43, 1-21. [MR: 782253] [Zbl: 0565.73046]
  28. W. T. KOITER, 1970, On the foundations of the linear theory of thin elastic shells, Proc. Kon. Ned. Akad. Wetensch., B73, 169-195. [Zbl: 0213.27002]
  29. H. LE DRET, 1991, Problèmes Variationnels dans les Multi-Domaines : Modélisation des Jonctions et Applications, Masson, Paris. [MR: 1130395] [Zbl: 0744.73027]
  30. H. LE DRET, 1995, Convergence of displacements and stresses in linearly elastic slender rods as the thickness goes to zero, Asymptotic Anal., 10, 367-402. [MR: 1338254] [Zbl: 0846.73025]
  31. J. L. LIONS, 1973, Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal, Lectures Notes in Mathematics, Vol. 323, Springer-Verlag. [MR: 600331] [Zbl: 0268.49001]
  32. E. MAGENES, G. STAMPACCHIA, 1958, I problemi al contorno per le equazioni differenziali di tipo ellitico, Ann. Scuola Norm. Sup. Pisa, 12, 247-358. [EuDML: 83216] [MR: 123818] [Zbl: 0082.09601]
  33. B. MIARA, E. SANCHEZ-PALENCIA, 1996, Asymptotic analysis of linearly elastic shells, Asymptotic Anal., 12, 41-54. [MR: 1373481] [Zbl: 0846.73038]
  34. V. V. NOVOZHILOV, 1959, Thin Shell Theory, Walters Noordhoff Publishers. [MR: 208886] [Zbl: 0135.43602]
  35. A. RAOULT, 1985, Construction d'un modèle d'évolution de plaques avec termes d'inertie de rotation, Annali di Matematica Pura ed Applicata, 139, 361-400. [MR: 798182] [Zbl: 0596.73033]
  36. A. RAOULT, 1988, Analyse Mathématique de Quelques Modèles de Plaques et de Poutres Élastiques ou Élasto-Plastiques, Thèse d'Etat, Université Pierre et Marie Curie, Paris.
  37. E. SANCHEZ-PALENCIA, 1990, Passages à la limite de l'élasticité tri-dimensionnelle à la théorie asymptotique des coques minces, C.R. Acad. Sci. Paris, Sér. II, 311, 909-916. [MR: 1088549] [Zbl: 0701.73080]
  38. L. TRABUCHO, J. M. VIAÑO, 1996, Mathematical modelling of rods, in Handbook of Numerical Analysis, Vol. IV (P. G. Ciarlet & J. L. Lions, Editors), pp. 487-974,North-Holland. [MR: 1422507] [Zbl: 0873.73041]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you