Free Access
Volume 31, Number 4, 1997
Page(s) 517 - 557
Published online 31 January 2017
  1. D. N. ARNOLD and R. S. FALK, 1989, A uniformly accurate finite element method for the Reissner-Mindlin plate, SIAM J. Numer. Anal. 26, pp 1276-1290. [MR: 1025088] [Zbl: 0696.73040] [Google Scholar]
  2. [2]J. BERGH and J. LÖFSTROM, 1976, Interpolation spaces, an introduction, Springer Verlag. [MR: 482275] [Zbl: 0344.46071] [Google Scholar]
  3. D. BRAESS and C. BLÖMER, 1990, A multigrid method for a parameter dependent problem in solid mechanics, Numer. Math. 57., pp. 747-762. [EuDML: 133479] [MR: 1065522] [Zbl: 0665.65077] [Google Scholar]
  4. J. H. BRAMBLE and J. E. PASCIAK, 1988, A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems, Math. Comp., 50, pp. 1-17. [MR: 917816] [Zbl: 0643.65017] [Google Scholar]
  5. J. H. BRAMBLE and J. E. PASCIAK, Iterative techniques for time dependent Stokes problem, to appear in Comput. Math. Appl. [MR: 1442058] [Zbl: 1030.76506] [Google Scholar]
  6. J. H. BRAMBLE, J. E. PASCIAK and A. T. VASSILEV, Analysis of inexact Uzawa algorithm for saddle point problems, to appear in SIAM J. Numer. Anal. [MR: 1451114] [Zbl: 0873.65031] [Google Scholar]
  7. J. H. BRAMBLE, J. E. PASCIAK and J. XU, 1991, The analysis of multigrid algorithms with nonnested spaces and noninherited quadratic forms, Math. Comp., 56, pp. 1-34. [MR: 1052086] [Zbl: 0718.65081] [Google Scholar]
  8. S. C. BRENNER, 1996, Multigrid methods for parameter dependent problems, to appear in Math. Modelling Numer. Anal, 30, pp. 265-297. [EuDML: 193805] [MR: 1391708] [Zbl: 0848.73062] [Google Scholar]
  9. F. BREZZI, M. FORTIN and R. STENBERG, 1991, Error analysis of mixed-interpolated elements for Reissner-Mindlin plates, Math. Models and Methods in Applied Sciences, 1, pp. 125-151. [MR: 1115287] [Zbl: 0751.73053] [Google Scholar]
  10. L. C. COWSAR, 1993, Dual variable Schwarz methods for mixed finite elements, Report TR93-09, Riee University, Houston. [Google Scholar]
  11. L. C. COWSAR, J. MANDEL and M. F. WHEELER, 1995, Balancing domain decomposition for mixed finite elements, Math. Comp., 64, pp. 989-1015. [MR: 1297465] [Zbl: 0828.65135] [Google Scholar]
  12. R. DURÁN and E. LIBERMAN, 1992 On mixed finite element methods for the Reissner-Mindlin plate model, Math. Comp., 58, pp.561-573. [MR: 1106965] [Zbl: 0763.73054] [Google Scholar]
  13. H. C. ELMAN and G. GOLUB, 1994, Inexact and preconditioned Uzawa algorithms for saddle point problems, SIAM J. Numer. Anal., 31, pp. 1645-1661. [MR: 1302679] [Zbl: 0815.65041] [Google Scholar]
  14. W. HACKBUSCH, 1994, Iterative solution of large sparse Systems of equations, Springer Verlag. [MR: 1247457] [Zbl: 0789.65017] [Google Scholar]
  15. Z. HUANG, 1990, A multi-grid algorithm for mixed problems with penalty, Numer. Math., 57, pp. 227-247. [EuDML: 133446] [MR: 1057122] [Zbl: 0712.73106] [Google Scholar]
  16. A. KLAWONN, 1994, An optimal preconditioner for a class of saddle point problems with a penalty term, Preprint. [MR: 1618832] [Zbl: 0912.65018] [Google Scholar]
  17. P. PEISKER, 1991, A multigrid method for Reissner-Mindlin plates, Numer. Math., 59, pp. 511-528. [EuDML: 133562] [MR: 1121656] [Zbl: 0736.73071] [Google Scholar]
  18. T. RUSTEN P. S. VASSILEVSKI and R. WÏNTHER, 1996, Interior penalty preconditioners for mixed finite element approximations of elliptic problems, Math. Comp., 65, pp.447-466. [MR: 1333325] [Zbl: 0857.65117] [Google Scholar]
  19. T. RUSTEN and R. WÏNTHER, 1992, A preconditioned iterative method for saddle point problems, SIAM J. Matrix Anal. Appl., 13, pp. 887-904. [MR: 1168084] [Zbl: 0760.65033] [Google Scholar]
  20. T. RUSTEN and R. WINTHER, 1993, Substructure preconditioners for elliptic saddle point problems, Math. Comp., 60, pp. 23-48. [MR: 1149293] [Zbl: 0795.65072] [Google Scholar]
  21. [21]D. SILVESTER and A. WATHEN, 1994, Fast iterative solution of stabilised Stokes Systems, Part II : Using general block preconditioners, SIAM J. Numer. Anal., 31, pp. 1352-1367. [MR: 1293519] [Zbl: 0810.76044] [Google Scholar]
  22. P. S. VASSILEVSKI and J. WANG, 1995, An application of the abstract multilevel theory to nonconforming finite element methods, SIAM J. Numer. Anal., 32, pp. 235-248. [MR: 1313711] [Zbl: 0828.65125] [Google Scholar]
  23. A. WATHEN, 1987, Realistic eigenvalue bounds for the Galerkin mass matrix, IMA J. Numer. Anal., 7, pp. 449-457. [MR: 968517] [Zbl: 0648.65076] [Google Scholar]
  24. A. WATHEN and D. SILVESTER, 1993, Fast iterative solution of stabilised Stokes Systems, Part I : Using simple diagonal preconditioners, SIAM J. Numer. Anal., 30, pp. 630-649. [MR: 1220644] [Zbl: 0776.76024] [Google Scholar]
  25. J. XU, 1996, The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids, to appear in Computing, 56, pp. 215-235. [MR: 1393008] [Zbl: 0857.65129] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you