Free Access
Issue
ESAIM: M2AN
Volume 32, Number 2, 1998
Page(s) 223 - 253
DOI https://doi.org/10.1051/m2an/1998320202231
Published online 27 January 2017
  1. P. ALEXANDRE, 1995, Algorithmes à métrique variable pour la recherche de zéros d'opérateurs maximaux monotones, Thèse d'État, Université de Liège.
  2. P. ALEXANDRE, P. TOSSINGS, 1996, The Generalized Variational Metric, Working paper, G.E.M.M.E., N° 9604, Université de Liège.
  3. J. F. BONNANS, J. C. GILBERT, C. LEMARÉCHAL, C. SAGASTIZABAL, février 1993, A family of variable metric proximal methods, Rapport de recherche INRIA 1851. [Zbl: 0832.90102]
  4. G. CHEN, M. TEBOULLE, 1993, Convergence analysis of a proximal-like minimization algorithm using Bregman functions, SIAM Journal on Optimization, vol. 3, 3, pp. 538-543. [MR: 1230155] [Zbl: 0808.90103]
  5. G. COHEN, 1980, Auxiliary problem principle and decomposition of optimization problems, JOTA, vol. 32, 3, pp. 277-305. [MR: 607601] [Zbl: 0417.49046]
  6. G. COHEN, 1988, Auxiliary problem principle extended to variational inequalities, JOTA, vol. 59, 2, pp. 325-334. [MR: 974037] [Zbl: 0628.90066]
  7. J. ECKSTEIN, 1993, Nonlinear proximal point algorithm using Bregman functions, MOR, vol. 18, 1, pp. 202-226. [MR: 1250114] [Zbl: 0807.47036]
  8. S. KABBADJ, 1994, Méthodes proximales entropiques, Thèse Université Montpellier II.
  9. B. LEMAIRE, 1988, Coupling Optimization Methods and Variational Convergence, Trends in Mathematical Optimization International Series of Num. Math., K. H. Hoffmann, J. B. Hiriart Urruty. C. Lemarechal, J. Zowe, editors, Birkhäuser Verlag, Basel, vol. 84, pp 163-179. [MR: 1017952] [Zbl: 0633.49010]
  10. B. MARTINET, 1972, Algorithmes pour la résolution de problèmes d'optimisation et de minimax, Thèse d'État, Université de Grenoble.
  11. M. QIAN, 1992, The Variable Metric Proximal Point Algorithm: Global and Super-linear Convergence, Manuscript, Department of Mathematics, GN-50, University of Washington, Seattle, WA 98195.
  12. M. QIAN, 1992, The Variable Metric Proximal Point Algorithm: Application to Optimization, Manuscript, Department of Mathematics, GN-50, University of Washington, Seattle, WA 98195.
  13. A. RENAUD, 1993, Algorithmes de régularisation et décomposition pour les problèmes variationnels monotones, Thèse de doctorat, E.N.S. des Mines de Paris.
  14. R. T. ROCKAFELLAR, 1976, Monotone Operators and the Proximal Point Algorithm, SIAM J. Control and Optimization, vol. 14, 5, pp 877-898. [MR: 410483] [Zbl: 0358.90053]
  15. P. TOSSINGS, 1990, Sur les zéros des opérateurs maximaux monotones et applications, Thèse d'État, Université de Liège.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you