Free Access
Volume 32, Number 4, 1998
Page(s) 405 - 431
Published online 27 January 2017
  1. S. BERTOLUZZA, Interior estimates for the wavelet Galerkin method, Numer. Math. 78 (1997), pp. 1-20. [MR: 1483566] [Zbl: 0888.65113] [Google Scholar]
  2. C. BORGERS and O. B. WIDLUND, On finite element domain imbedding methods, SIAM J. Numer. Anal., 27 (1990), pp. 963-978. [MR: 1051116] [Zbl: 0705.65078] [Google Scholar]
  3. D. BRAESS, Finite-Elemente, Springer Lehrbuch, Springer-Verlag, Berlin, 1992. [Zbl: 0754.65084] [Google Scholar]
  4. J. H. BRAMBLE and J. E. PASCIAK, New estimates for multilevel algorithms including the V-cycle, Math. Comp., 60 (1993), pp. 447-471. [MR: 1176705] [Zbl: 0783.65081] [Google Scholar]
  5. J. H. BRAMBLE, J. E. PASCIAK and J. XU, Parallel multilevel preconditioners, Math. Comp., 55 (1990), pp. 1-22. [MR: 1023042] [Zbl: 0703.65076] [Google Scholar]
  6. C. K. CHUI, Multivariate Splines, vol. 54 of CBMS-NSF Series in Applied Mathematics, SIAM, Philadelphia, 1988. [MR: 1033490] [Zbl: 0687.41018] [Google Scholar]
  7. B. A. CIPRA, A rapid-deployment force for CFD : Cartesian grids, Siam News (Newsjournal of the Society for Industrial and Applied Mathematics), 25 (1995). [Google Scholar]
  8. A. COHEN, I. DAUBECHIES and J.-C. FEAUVEAU, Biorthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math., 45 (1992), pp. 485-560. [MR: 1162365] [Zbl: 0776.42020] [Google Scholar]
  9. S. DAHLKE, V. LATOUR and K. GRÖCHENIG, Biorthogonal box spline wavelet bases, Bericht 122, Institut für Geometrie und Praktische Mathematik, RWTH Aachen, 1995. [Zbl: 0946.65149] [Google Scholar]
  10. W. DAHMEN and A. KUNOTH, Multilevel preconditioning, Numer. Math., 63 (1992), pp. 315-344. [EuDML: 133684] [MR: 1186345] [Zbl: 0757.65031] [Google Scholar]
  11. W. DAHMEN and C. A. MICCHELLI, Using the refinement equation for evaluating integrals of wavelets, SIAM J. Numer. Anal., 30 (1993), pp. 507-537. [MR: 1211402] [Zbl: 0773.65006] [Google Scholar]
  12. W. DAHMEN, S. PRÖSSDORF and R. SCHNEIDER, Wavelet approximation methods for pseudodifferential equations I : Stability and convergence, Math. Z., 215 (1994), pp. 583-620. [EuDML: 174630] [MR: 1269492] [Zbl: 0794.65082] [Google Scholar]
  13. I. DAUBECHIES, Orthonormal bases of compacity supported wavelets, Comm. Pure Appl. Math., 41 (1988), pp. 906-966. [MR: 951745] [Zbl: 0644.42026] [Google Scholar]
  14. C. DE BOOR, K. HÖLLING and S. RIEMENSCHNEIDER, Box Splines, vol. 98 of Applied Mathematical Sciences, Springer-Verlag, Berlin, 1993. [MR: 1243635] [Zbl: 0814.41012] [Google Scholar]
  15. P. DEUFLHARD and A. HOHMANN, Numerical Analysis : A First Course in Scientific Computation, de Gruyter Texbook, de Gruyter, Berlin, New York, 1994. [MR: 1325691] [Zbl: 0818.65002] [Google Scholar]
  16. G. J. FIX and G. STRANG, A Fourier analysis of the finite element method in Ritz-Galerkin theory, in Constructive Aspects of Functional Analysis, Rome, 1973, Edizioni Cremonese, pp. 265-273. [MR: 258297] [Zbl: 0179.22501] [Google Scholar]
  17. D. GILBARG and N. S. TRUDINGER, Elliptic Partial Differential Equations of Second Order, vol. 224 of Grundlehren der mathematischen Wissenshaften, Springer Verlag, Berlin, 1983. [MR: 737190] [Zbl: 0562.35001] [Google Scholar]
  18. R. GLOWINSKI, Numerical Methods for Nonlinear Variational Problems, Springer Series in Computational Physics, Springer-Verlag, New York, 1984. [MR: 737005] [Zbl: 0536.65054] [Google Scholar]
  19. R. GLOWINSKI and T.-W. PAN, Error estimates for fictitious domain/penalty/finite element methods, Calcolo, 19 (1992), pp. 125-141. [MR: 1219625] [Zbl: 0770.65066] [Google Scholar]
  20. R. GLOWINSKI, T.-W. PAN, R. O. Jr. WELLS and X. ZHOU, Wavelet and finite element solutions for the Neumann problem using fictitious domains, J. Comp. Phys., 126 (1996), pp. 40-51. [MR: 1391621] [Zbl: 0852.65098] [Google Scholar]
  21. R. GLOWINSKI, A. RIEDER, R. O. Jr. WELLS and X. ZHOU, A wavelet multilevel method for Dirichlet boundary value problems in general domains, Modélisation Mathématique et Analyse Numérique (M2AN), 30 (1996), pp. 711-729. [MR: 1419935] [Zbl: 0860.65121] [Google Scholar]
  22. W. HACKBUSCH, Elliptic Differential Equations : Theory and Numerical Treatment, vol. 18 of Springer Series in Computational Mathematics, Springer Verlag, Heidelberg, 1992. [MR: 1197118] [Zbl: 0755.35021] [Google Scholar]
  23. W. HACKBUSCH, Iterative Solution of Large Sparse Systems of Equations, Applied Mathematical Sciences, Springer-Verlag, New York, 1994. [MR: 1247457] [Zbl: 0789.65017] [Google Scholar]
  24. R. H. W. HOPPE, Une méthode multigrille pour la solution des problèmes d'obstacle, Modélisation Mathématiques et Analyse Numérique (M2AN), 24 (1990), pp. 711-736. [EuDML: 193613] [MR: 1080716] [Zbl: 0716.65056] [Google Scholar]
  25. S. JAFFARD, Wavelet methods for fast resolution of elliptic problems, SIAM J. Numer. Anal., 29 (1992), pp. 965-986. [MR: 1173180] [Zbl: 0761.65083] [Google Scholar]
  26. A. KUNOTH, Computing refinable integrals documentation of the program, Manual Institut für Geometrie und Praktische Mathemtik, RWTH Aachen, 1995. [Google Scholar]
  27. Y. A. KUZNETSOV, S. A. FINOGENOV and A. V. SUPALOV, Fictitiuos domain methods for 3D elliptic problems: algorithms and software within a parallel environment, Arbeitspapiere der GMD 726, GMD, D-53754 St. Augustin, Germany, 1993. [Google Scholar]
  28. A. LATTO, H. L. RESNIKOFF and E. TENENBAUM, The evaluation of connection coefficients of compactly supported wavelets, in Proceedings of the USA-French Workshop on Wavelets and Turbulence, Princeton University, 1991. [Google Scholar]
  29. S. V. NEPOMNYASCHIKH, Mesh theorems of traces, normalization of function traces and their inversion, Sov. J. Numer. Anal. Math. Model., 6 (1991), pp. 223-242. [MR: 1126677] [Zbl: 0816.65097] [Google Scholar]
  30. S. V. NEPOMNYASCHIKH, Fictitious space method on unstructured grids, East-West J. Numer. Math., 3 (1995), pp. 71-79. [MR: 1331485] [Zbl: 0831.65116] [Google Scholar]
  31. J. A. NITSCHE, Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens, Numer. Math., 11 (1968), pp. 346-348. [EuDML: 131833] [MR: 233502] [Zbl: 0175.45801] [Google Scholar]
  32. J. A. NITSCHE and A. H. SCHATZ, Interior estimates for Ritz-Galerkin methods, Math. Comp., 28 (1974), pp. 937-958. [MR: 373325] [Zbl: 0298.65071] [Google Scholar]
  33. P. OSWALD, Multilevel Finite Element Approximation : Theory and Applications, Teubner Skripten zur Numerik, B. G. Teubner, Stuttgart, Germany, 1994. [MR: 1312165] [Zbl: 0830.65107] [Google Scholar]
  34. G. STRANG and G. J. FIX, An Analysis of the Finite Element method, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Englewood Cliffs, N. J., 1973. [MR: 443377] [Zbl: 0356.65096] [Google Scholar]
  35. R. O. Jr. WELLS and X. ZHOU, Wavelet-Galerkin solutions for the Dirichlet problem, Numer. Math., 70 (1995), pp. 379-396. [MR: 1330870] [Zbl: 0824.65108] [Google Scholar]
  36. J. WLOKA, Partial Differential Equations, Cambridge University Press, Cambridge, U.K., 1987. [MR: 895589] [Zbl: 0623.35006] [Google Scholar]
  37. J. XU, The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids, Computing, 56 (1996), pp. 215-235. [MR: 1393008] [Zbl: 0857.65129] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you