Free Access
Issue
ESAIM: M2AN
Volume 32, Number 6, 1998
Page(s) 671 - 680
DOI https://doi.org/10.1051/m2an/1998320606711
Published online 27 January 2017
  1. P. M. ANSELONE, Collectively Compact Operator Approximation Theory, Prentice-Hall, Englewood Cliffs, New Jersey, 1971. [Zbl: 0228.47001] [MR: 443383]
  2. P. M. ANSELONE and T. W. PALMER, Collectively compact sets of linear operators, Pacific Journal of Mathematics, 25, No 3. 417- 422, 1968. [MR: 227806] [Zbl: 0157.45202]
  3. P. M. ANSELONE and T. W. PALMER, Spectral analysis of collectively compact, strongly convergent operator sequences, Pacific Journal of Mathematics, 25, No. 3. 423-431, 1968. [MR: 227807] [Zbl: 0157.45203]
  4. A. BÖTTCHER, Pseudospectra and singular values of large convolution operators, J. Int. Eqs. Applics, 6: 267-301, 1994. [MR: 1312518] [Zbl: 0819.45002]
  5. H. BREZIS, Analyse Fonctionnelle. Théorie et applications, Masson, quatrième édition, 1993. [MR: 697382] [Zbl: 0511.46001]
  6. F. CHAITIN-CHATELIN and V. FRAYSSÉ, Lectures on Finite Precision Computations, SIAM, 1996. [MR: 1381897] [Zbl: 0846.65020]
  7. F. CHATELIN, Spectral Approximation of linear operators, Academic Press, New York, 1983. [MR: 716134] [Zbl: 0517.65036]
  8. N. DUNFORD and J. T. SCHWARTZ, Linear operators, part I, general theory. Wiley (Interscience), New York, 1958. [MR: 1009162] [Zbl: 0084.10402]
  9. S.K. GODUNOV and V. S. RYABENKI, Theory of Difference Schemes: an Introduction. North-Holland, Amsterdam, 1964. Translation by E. Godfedsen. [MR: 181117] [Zbl: 0116.33102]
  10. T. KATO, Perturbation theory for linear operators, Springer, New York, 1976. [MR: 407617] [Zbl: 0342.47009]
  11. H. J. LANDAU, On Szegö's eigenvalue distribution theorem and non-hermitian kernels, J. Analyse Math., 28 : 335-357, 1975. [MR: 487600] [Zbl: 0321.45005]
  12. E. R. LORCH, The spectrum of linear transformation, Transactions of American Mathematical Society, 52: 238-248, 1942. [MR: 8121] [Zbl: 0060.27203]
  13. O. NEVANLINNA, Convergence iterations for linear equations, Birkhauser, Basel, 1993. [MR: 1217705] [Zbl: 0846.47008]
  14. J. D. NEWBURGH, The variation of spectra, Duke Math. J., 5: 165-176, 1951. [MR: 51441] [Zbl: 0042.12302]
  15. S. C. REDDY, Pseudospectra of Wiener-Hopf integral operators and constant-coefficient difference operators, J. Integral. Eqs. Applics, 5: 369-403, 1993. [MR: 1248497] [Zbl: 0805.47023]
  16. L. REICHEL and L. N. TREFETHEN, Eigenvalues and pseudo-eigenvalues of Toeplitz matrices, Linear algebra and its applications 162-164, pages 153-185, 1992. [MR: 1148398] [Zbl: 0748.15010]
  17. A. E. TAYLOR, The resolvent of a closed transformation, Bull. AMS, 44: 70-74, 1938. [MR: 1563683] [Zbl: 0018.36503]
  18. L. N. TREFETHEN, Pseudospectra of matrices. In Numerical Analysis. 1991, D. F. Griffiths and G. A. Watson editors, Longman, Harlow, 1992. [MR: 1177237] [Zbl: 0798.15005]
  19. [19]L. N. TREFETHEN, Pseudospectra of linear operators. SIAM Rev., 39: 383-406, 1997. [MR: 1469941] [Zbl: 0896.15006]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you