Free Access
Issue |
ESAIM: M2AN
Volume 32, Number 6, 1998
|
|
---|---|---|
Page(s) | 671 - 680 | |
DOI | https://doi.org/10.1051/m2an/1998320606711 | |
Published online | 27 January 2017 |
- P. M. ANSELONE, Collectively Compact Operator Approximation Theory, Prentice-Hall, Englewood Cliffs, New Jersey, 1971. [Zbl: 0228.47001] [MR: 443383] [Google Scholar]
- P. M. ANSELONE and T. W. PALMER, Collectively compact sets of linear operators, Pacific Journal of Mathematics, 25, No 3. 417- 422, 1968. [MR: 227806] [Zbl: 0157.45202] [Google Scholar]
- P. M. ANSELONE and T. W. PALMER, Spectral analysis of collectively compact, strongly convergent operator sequences, Pacific Journal of Mathematics, 25, No. 3. 423-431, 1968. [MR: 227807] [Zbl: 0157.45203] [Google Scholar]
- A. BÖTTCHER, Pseudospectra and singular values of large convolution operators, J. Int. Eqs. Applics, 6: 267-301, 1994. [MR: 1312518] [Zbl: 0819.45002] [Google Scholar]
- H. BREZIS, Analyse Fonctionnelle. Théorie et applications, Masson, quatrième édition, 1993. [MR: 697382] [Zbl: 0511.46001] [Google Scholar]
- F. CHAITIN-CHATELIN and V. FRAYSSÉ, Lectures on Finite Precision Computations, SIAM, 1996. [MR: 1381897] [Zbl: 0846.65020] [Google Scholar]
- F. CHATELIN, Spectral Approximation of linear operators, Academic Press, New York, 1983. [MR: 716134] [Zbl: 0517.65036] [Google Scholar]
- N. DUNFORD and J. T. SCHWARTZ, Linear operators, part I, general theory. Wiley (Interscience), New York, 1958. [MR: 1009162] [Zbl: 0084.10402] [Google Scholar]
- S.K. GODUNOV and V. S. RYABENKI, Theory of Difference Schemes: an Introduction. North-Holland, Amsterdam, 1964. Translation by E. Godfedsen. [MR: 181117] [Zbl: 0116.33102] [Google Scholar]
- T. KATO, Perturbation theory for linear operators, Springer, New York, 1976. [MR: 407617] [Zbl: 0342.47009] [Google Scholar]
- H. J. LANDAU, On Szegö's eigenvalue distribution theorem and non-hermitian kernels, J. Analyse Math., 28 : 335-357, 1975. [MR: 487600] [Zbl: 0321.45005] [Google Scholar]
- E. R. LORCH, The spectrum of linear transformation, Transactions of American Mathematical Society, 52: 238-248, 1942. [MR: 8121] [Zbl: 0060.27203] [Google Scholar]
- O. NEVANLINNA, Convergence iterations for linear equations, Birkhauser, Basel, 1993. [MR: 1217705] [Zbl: 0846.47008] [Google Scholar]
- J. D. NEWBURGH, The variation of spectra, Duke Math. J., 5: 165-176, 1951. [MR: 51441] [Zbl: 0042.12302] [Google Scholar]
- S. C. REDDY, Pseudospectra of Wiener-Hopf integral operators and constant-coefficient difference operators, J. Integral. Eqs. Applics, 5: 369-403, 1993. [MR: 1248497] [Zbl: 0805.47023] [Google Scholar]
- L. REICHEL and L. N. TREFETHEN, Eigenvalues and pseudo-eigenvalues of Toeplitz matrices, Linear algebra and its applications 162-164, pages 153-185, 1992. [MR: 1148398] [Zbl: 0748.15010] [Google Scholar]
- A. E. TAYLOR, The resolvent of a closed transformation, Bull. AMS, 44: 70-74, 1938. [MR: 1563683] [Zbl: 0018.36503] [Google Scholar]
- L. N. TREFETHEN, Pseudospectra of matrices. In Numerical Analysis. 1991, D. F. Griffiths and G. A. Watson editors, Longman, Harlow, 1992. [MR: 1177237] [Zbl: 0798.15005] [Google Scholar]
- [19]L. N. TREFETHEN, Pseudospectra of linear operators. SIAM Rev., 39: 383-406, 1997. [MR: 1469941] [Zbl: 0896.15006] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.