Free Access
Volume 32, Number 6, 1998
Page(s) 715 - 728
Published online 27 January 2017
  1. N. AUBRY, W. LIAN and E. S. TITI, Preserving symmetries in the proper orthogonal decomposition, SIAM J. Sci. Comp., 14, 483-505, 1993. [MR: 1204243] [Zbl: 0774.65084] [Google Scholar]
  2. R. BRONSTERING, Some computational aspects on approximate inertial manifolds and finite differences. Discrete and Continuous Dynamical Systems, 2, 417-454, 1996. [MR: 1414079] [Zbl: 0949.65135] [Google Scholar]
  3. M. CHEN, H. CHOI, T. DUBOIS, J. SHEN and R. TEMAM, The incremental unknowns-multilevel scheme for the simulation of turbulent channel flows. Proceedings of 1996 Summer Program, Center for Turbulence Research, NASA Ames/Stanford Univ., pages 291-308, 1996. [Google Scholar]
  4. M. CHEN and R. TEMAM. Incremental unknowns for solving partial differential equations. Numerische Mathematik, 59, 255-271, 1991. [EuDML: 133548] [MR: 1106383] [Zbl: 0712.65103] [Google Scholar]
  5. M. CHEN and R. TEMAM, Nonlinear Galerkin method in the finite difference case and wavelet-like incremental-unknowns. Numerische Mathematik, 64(3), 271-294, 1993. [EuDML: 133706] [MR: 1206665] [Zbl: 0798.65093] [Google Scholar]
  6. M. CHEN and R. TEMAM, Nonlinear Galerkin method with multilevel incremental-unknowns. In E.P. Agarwal, editor, Contributions in Numerical Mathematics, pages 151-164. WSSIAA, 1993. [MR: 1299757] [Zbl: 0834.65094] [Google Scholar]
  7. E. J. DOEDEL, X. J. WANG and T. F. FAIRGRIEVE. Software for continuation and bifurcation problems in ordinary differential equations. CRPC-95-2, Center for Research on Parallel Computing, California Institute of Technology, 1995. [Google Scholar]
  8. C. FOIAS, JOLLY, KEVREKIDIS and E. S. TITI. Dissipativity of numerical schemes. Nonlinearity, pages 591-613, 1991. [MR: 1124326] [Zbl: 0734.65080] [Google Scholar]
  9. C. FOIAS, O. MANLEY and R. TEMAM. Modeling of the interaction of small and large eddies in two dimensional turbulent flows. Math. Model. and Num. Anal., 22(1), 1988. [EuDML: 193526] [MR: 934703] [Zbl: 0663.76054] [Google Scholar]
  10. C. FOIAS and E. S. TITI Determining nodes, finite difference schemes and inertial manifolds. Nonlinearity, 4, 135-153, 1991. [MR: 1092888] [Zbl: 0714.34078] [Google Scholar]
  11. G. GOLUB and C. VAN LOAN. Matrix Computations. The John Hopkins University Press, second edition, 1989. [MR: 1002570] [Zbl: 0733.65016] [Google Scholar]
  12. J. HALE. Asymptotic Behavior of Dissipative Systems. AMS, 1988. [MR: 941371] [Zbl: 0642.58013] [Google Scholar]
  13. J. M. HYMAN, B. NICOLAENKO and S. ZALESKI Order and complexity in the Kuramoto-Sivashinsky model of weakly turbulent interfaces. Physica D, 23, 265-292, 1986. [MR: 876914] [Zbl: 0621.76065] [Google Scholar]
  14. M. JOLLY Explicit construction of an inertial manifold for a reaction diffusion equation. J. Diff. Eq., 78, 220-261, 1989. [MR: 992147] [Zbl: 0691.35049] [Google Scholar]
  15. M. S. JOLLY, I. G. KEVREKIDIS and E. S. TITI. Approximate inertial manifolds for the Kuramoto-Sivashinsky equation : Analysis and computations. Physica D, 44, 38-60, 1990. [MR: 1069671] [Zbl: 0704.58030] [Google Scholar]
  16. M. S. JOLLY, I. G. KEVREKIDIS and E. S. TITI. Preserving dissipation in approximate inertial forms for the Kuramoto-Sivashinsky equation. J. Dyn. Diff. Eq., 3, 179-197, 1991. [MR: 1109435] [Zbl: 0738.35024] [Google Scholar]
  17. D. A. JONES, L. G. MARGOLIN and E. S. TITI. On the effectiveness of the approximate inertial manifold-a computational study, to appear in Theoretical and Computational Fluid Dynamics, 1995. [Zbl: 0838.76066] [Google Scholar]
  18. D. A. JONES, L. G. MARGOLIN and A. C. POJE. Enslaved finite difference schemes for nonlinear dissipative pdes. Num. Meth. for PDEs, page to appear. [MR: 1363860] [Zbl: 0879.65063] [Google Scholar]
  19. KEVREKIDIS, NICOLAENKO and SCOVEL. Back in the saddle again : A computer assisted study of the Kuramoto-Sivashinsky equation. Siam J. Apl. Math., 50, 760-790, 1990. [MR: 1050912] [Zbl: 0722.35011] [Google Scholar]
  20. E. KORONTINIS and M. R. TRUMMER. A finite difference scheme for Computing inertial manifolds. Z angew Math. Phys., 46, 419-444, 1995. [MR: 1335911] [Zbl: 0824.65125] [Google Scholar]
  21. L. G. MARGOLIN and D. A. JONES. An approximate inertial manifold for computing Burger's equation. Physica D, 60, 175-184, 1992. [MR: 1195598] [Zbl: 0789.65069] [Google Scholar]
  22. M. MARION, Approximate inertial manifolds for reaction-diffusion equations in high space dimension. J. Dyn. Diff. Eq., 1, 245-267, 1989. [MR: 1010967] [Zbl: 0702.35127] [Google Scholar]
  23. M. MARION and R. TEMAM. Nonlinear Galerkin methods. SIAM J. Num. An., 26, 1139-1157, 1989. [MR: 1014878] [Zbl: 0683.65083] [Google Scholar]
  24. B. NICOLAENKO, B. SCHEURER and R. TEMAM. Some global dynamical properties of the Kuramoto-Sivashinsky equation : Nonlinear stability and attractors. Physica D, 16, 155-183, 1985. [MR: 796268] [Zbl: 0592.35013] [Google Scholar]
  25. R. TEMAM. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer Verlag, 1988. [MR: 953967] [Zbl: 0662.35001] [Google Scholar]
  26. R. WALLACE and D. M. SLOAN. Numerical solution of a nonlinear dissipative System using a pseudospectral method and inertial manifolds. Siam J. Sci. Comput., 16, 1049-1070, 1994. [MR: 1346292] [Zbl: 0833.65087] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you